The scientific exploration of Mallorca Channel seamounts (western Mediterranean) is improving the knowledge of the Ses Olives (SO), Ausias March (AM), and Emile Baudot (EB) seamounts for their inclusion in the Natura 2000 network. The aims are to map and characterize benthic species and habitats by means of a geological and biological multidisciplinary approach: high-resolution acoustics, sediment and rock dredges, beam trawl, bottom trawl, and underwater imagery. Among the seamounts, 15 different morphological features were differentiated, highlighting the presence of 4000 pockmarks, which are seafloor rounded depressions indicators of focused fluid flow escapes, usually gas and/or water, from beneath the seabed sediments. So far, a total of 547 species or taxa have been inventoried, with sponges, fishes, mollusks, and crustaceans the most diverse groups including new taxa and new geographical records. Up to 29 categories of benthic habitats have been found, highlighting those included in the Habitats Directive: maërl beds on the summits of AM and EB, pockmarks around the seamounts and coral reefs in their rocky escarpments as well as fields of Isidella elongata on sedimentary bathyal bottoms. Trawling is the main demersal fishery developed around SO and AM, which are targeted to deep water crustaceans: Parapenaeus longirostris, Nephrops norvegicus, and Aristeus antennatus. This study provides scientific information for the proposal of the Mallorca Channel seamounts as a Site of Community Importance and for its final declaration as a Special Area of Conservation.
One of the objectives of the LIFE IP INTEMARES project is to assess the impact of bottom trawling on the vulnerable benthic habitats of the circalittoral bottoms of the Menorca Channel (western Mediterranean), designated a Site of Community Importance (SCI) within the Natura 2000 network. The present study compares the epibenthic communities of four areas, subjected to different bottom trawl fishing intensity levels. The assignment of fishing effort levels was based on the fishing effort distribution in the area calculated from Vessel Monitoring System (VMS) data and the existence of two Fishing Protected Zones in the Menorca Channel. Biological samples were collected from 39 beam trawl stations, sampled during a scientific survey on April 2019. We compare the diversity, composition, and density of the epibenthic flora and fauna, together with the rhodoliths coverage and the morphology of the main species of rhodoliths of four areas subjected to different levels of bottom trawl fishing effort, including one that has never been impacted by trawling. Our results have shown negative impacts of bottom trawling on rhodoliths beds and the first signals of their recovery in areas recently closed to this fishery, which indicate that this is an effective measure for the conservation of this habitat of special interest and must be included in the management plan required to declare the Menorca Channel as a Special Area of Conservation.
The poorly known sponge species Axinella vellerea (Topsent, 1904), Acarnus levii (Vacelet, 1960) and Haliclona poecillastroides (Vacelet, 1969) are reported from bottom-trawl samples off the Balearic Islands, Western Mediterranean. A re-description is provided for all three species and the Folmer fragment of cytochrome oxidase subunit I (COI) obtained for A. levii and H. poecillastroides. This is the second report of A. vellerea in the Mediterranean, the first time that A. levii is reported outside Corsica and the first time that H. poecillastroides is documented outside the Gulf of Lion, France. The systematic allocation of A. levii and H. poecillastroides is discussed based on a COI phylogenetic analysis and morphology. The poorly understood phylogeny of the Haplosclerida does not permit us to find a proper allocation for H. poecillastroides, although its current position in the genus Haliclona or the family Chalinidae is not defensible. On the other hand, A. levii currently fits best in the family Microcionidae, and seems related to some Clathria species with mixed features between Clathria and Acarnus. Considering that the species of the genus Acarnus shares a strong synapomorphy (the possession of Cladotylotes), it is plausible for all Acarnus species to be Microcionids. We conclude that H. poecillastroides needs to be reallocated to a new genus: Xestospongia poecillastroides comb. nov. (Petrosiidae). However, a reallocation of A. levii is not advisable for the moment, as this would imply major systematic changes such as the reallocation of the whole genus Acarnus to Microcionidae, and the redescription of Microcionidae and Acarnidae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.