This paper presents the design of a fault detection and diagnosis system for a quadrotor unmanned aerial vehicle under partial or total actuator fault. In order to control the quadrotor, the dynamic system is divided in two subsystems driven by the translational and the rotational dynamics, where the rotational subsystem is based on a linear parameter-varying model. A robust linear parameter-varying observer applied to the rotational subsystem is considered to detect actuator faults, which can occur as total failures (loss of a propeller or a motor) or partial faults (degradation). Furthermore, fault diagnosis is done by analyzing the displacements of the roll and pitch angles. Numerical experiments are carried out in order to illustrate the effectiveness of the proposed methodology.
Due to the increasing need for continuous use of face masks caused by COVID-19, it is essential to evaluate the filtration quality that each face mask provides. In this research, an estimation method based on thermal image processing was developed; the main objective was to evaluate the effectiveness of different face masks while being used during breathing. For the acquisition of heat distribution images, a thermographic imaging system was built; moreover, a deep learning model detected the leakage percentage of each face mask with a mAP of 0.9345, recall of 0.842 and F1-score of 0.82. The results obtained from this research revealed that the filtration effectiveness depended on heat loss through the manufacturing material; the proposed estimation method is simple, fast, and can be replicated and operated by people who are not experts in the computer field.
Object tracking is the process of estimating in time N the location of one or more moving element through an agent (camera, sensor, or other perceptive device). An important application in object tracking is the analysis of animal behavior to estimate their health. Traditionally, experts in the field have performed this task. However, this approach requires a high level of knowledge in the area and sufficient employees to ensure monitoring quality. Another alternative is the application of sensors (inertial and thermal), which provides precise information to the user, such as location and temperature, among other data. Nevertheless, this type of analysis results in high infrastructure costs and constant maintenance. Another option to overcome these problems is to analyze an RGB image to obtain information from animal tracking. This alternative eliminates the reliance on experts and different sensors, yet it adds the challenge of interpreting image ambiguity correctly. Taking into consideration the aforementioned, this article proposes a methodology to analyze lamb behavior from an approach based on a predictive model and deep learning, using a single RGB camera. This method consists of two stages. First, an architecture for lamb tracking was designed and implemented using CNN. Second, a predictive model was designed for the recognition of animal behavior. The results obtained in this research indicate that the proposed methodology is feasible and promising. In this sense, according to the experimental results on the used dataset, the accuracy was 99.85% for detecting lamb activities with YOLOV4, and for the proposed predictive model, a mean accuracy was 83.52% for detecting abnormal states. These results suggest that the proposed methodology can be useful in precision agriculture in order to take preventive actions and to diagnose possible diseases or health problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.