Dengue virus (DENV) and West Nile virus (WNV) are members of the Flavivirus genus of positive-strand RNA viruses. RNA sequences and structures, primarily in the untranslated regions, have been shown to modulate flaviviral gene expression and genome replication. Previously, we demonstrated that a structure in the DENV coding region (cHP) enhances translation start codon selection and is required for viral replication. Here we further characterize the role of the cHP in the DENV life cycle. We demonstrate that the cHP is required for efficient viral RNA synthesis in a sequence-independent manner. Viruses with a disrupted cHP are rescued by a spontaneous compensatory mutation that restabilizes the structure. Furthermore, the cHP, which is predicted to be conserved among arthropod-borne flaviviruses, is required for WNV replication. We propose that the cHP is a multifunctional determinant of flavivirus replication, functioning in both translation and RNA synthesis.
Foodborne viruses such as norovirus and hepatitis A virus cause frequent outbreaks associated with the consumption of raw or undercooked oysters. Viral particles are bioaccumulated in the oyster’s digestive glands, making RNA extraction and RT-PCR detection difficult due to the complex nature of the food matrix and the presence of RT-PCR inhibitors. Herein, we have developed a viral RNA extraction protocol from raw oysters using murine norovirus (MNV) as a surrogate for human noroviruses. The method combines lysis in Tri-Reagent reagent, followed by RNA extraction using Direct-Zol purification columns and lithium chloride precipitation. Viral load quantification was performed by both qRT-PCR and droplet-digital RT-PCR. We have demonstrated that this method can efficiently remove RT-PCR inhibitors, and is sensitive enough to reliably detect viral contamination at 25 PFU/0.2 g. We have also compared the efficiency of this method with the ISO 15216-1:2017 method and Method E developed by Quang and colleagues, and observed significantly higher efficiency compared with the ISO 15216-1 method and comparable efficiency with Method E, with less steps, and shorter hands-on time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.