Indica and japonica rice (Oryza sativa L.) plants were transformed by particle bombardment with the Itr1 gene encoding the barley trypsin inhibitor BTI-CMe, under the control of its own promoter that confers endosperm specificity, and the maize ubiquitin promoter. From 38 independent transgenic lines of indica (breeding line IR58) and 15 of the japonica (cv Senia) selected, 22 and 11, respectively, expressed the barley inhibitor at detectable levels. The transgene was correctly translated as indicated by western blot analysis with a level of expression in R3 seeds up to 0.31% (IR58) and 0.43% (Senia) of the total extracted protein. The functional integrity of BTI-CMe was confirmed by trypsin activity assays in liquid media and by activity staining gels, performed with seed extracts. The significant reduction of the survival rate of the rice weevil (Sitophilus oryzae, Coleoptera: Curculionidae) reared on homozygous transgenic indica and japonica rice seeds expressing the BTI-CMe, compared to non-transformed controls, and the decrease in the trypsin-like activity of insect crude midgut extracts, confirmed the utility of this proteinase inhibitor gene for the control of important storage pests.
Digestive endoprotease activities of the rice water weevil, Lissorhoptrus brevirostris Suffrian (Coleoptera: Curculionidae), were characterized based on the ability of gut extracts to hydrolyze specific synthetic substrates, optimal pH, and hydrolysis sensitivity to protease inhibitors. Larvae of this species were found to use a complex proteolytic system that includes cathepsin D-, cathepsin B-, trypsin-, and chymotrypsin-like activities. Trypsin-like activity was evenly distributed among the anterior, middle, and posterior portions of the gut, whereas cathepsin B- and cathepsin D-like activities were mainly located in the anterior and middle sections, and the chymotrypsin-like activity was highest in the middle and posterior sections. Gelatin-containing native-PAGE gels indicated the presence of several aspartyl, cysteine, and serine protease forms and confirmed the spatial organization of the proteolytic digestive process.
The microprojectile bombardment procedure has allowed the stable transformation of indica and japonica rice varieties, although at different frequencies of transformation depending mainly on their regeneration capacity and on the specific parameters of the transformation protocol. A study of the process of regeneration to whole plants from primary calli derived from mature indica and japonica rice seeds, via embryogenesis, has shown that somatic embryos are produced by division and differentiation of the external cell layers of callus tissues. Adjusting the bombardment conditions to optimize gene delivery to those regenerable cells, we have evaluated the influence of parameters such as the target distance, particle penetration and the effect of osmotic treatment on the regeneration capacity of bombarded cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.