Background Many factors involved in the onset and clinical course of the ongoing COVID-19 pandemic are still unknown. Although big data analytics and artificial intelligence are widely used in the realms of health and medicine, researchers are only beginning to use these tools to explore the clinical characteristics and predictive factors of patients with COVID-19. Objective Our primary objectives are to describe the clinical characteristics and determine the factors that predict intensive care unit (ICU) admission of patients with COVID-19. Determining these factors using a well-defined population can increase our understanding of the real-world epidemiology of the disease. Methods We used a combination of classic epidemiological methods, natural language processing (NLP), and machine learning (for predictive modeling) to analyze the electronic health records (EHRs) of patients with COVID-19. We explored the unstructured free text in the EHRs within the Servicio de Salud de Castilla-La Mancha (SESCAM) Health Care Network (Castilla-La Mancha, Spain) from the entire population with available EHRs (1,364,924 patients) from January 1 to March 29, 2020. We extracted related clinical information regarding diagnosis, progression, and outcome for all COVID-19 cases. Results A total of 10,504 patients with a clinical or polymerase chain reaction–confirmed diagnosis of COVID-19 were identified; 5519 (52.5%) were male, with a mean age of 58.2 years (SD 19.7). Upon admission, the most common symptoms were cough, fever, and dyspnea; however, all three symptoms occurred in fewer than half of the cases. Overall, 6.1% (83/1353) of hospitalized patients required ICU admission. Using a machine-learning, data-driven algorithm, we identified that a combination of age, fever, and tachypnea was the most parsimonious predictor of ICU admission; patients younger than 56 years, without tachypnea, and temperature <39 degrees Celsius (or >39 ºC without respiratory crackles) were not admitted to the ICU. In contrast, patients with COVID-19 aged 40 to 79 years were likely to be admitted to the ICU if they had tachypnea and delayed their visit to the emergency department after being seen in primary care. Conclusions Our results show that a combination of easily obtainable clinical variables (age, fever, and tachypnea with or without respiratory crackles) predicts whether patients with COVID-19 will require ICU admission.
Background Hospital workers have been the most frequently and severely affected professional group during the COVID-19 pandemic, and have a big impact on transmission. In this context, innovative tools are required to measure the symptoms compatible with COVID-19, the spread of infection, and testing capabilities within hospitals in real time. Objective We aimed to develop and test an effective and user-friendly tool to identify and track symptoms compatible with COVID-19 in hospital workers. Methods We developed and pilot tested Hospital Epidemics Tracker (HEpiTracker), a newly designed app to track the spread of COVID-19 among hospital workers. Hospital staff in 9 hospital centers across 5 Spanish regions (Andalusia, Balearics, Catalonia, Galicia, and Madrid) were invited to download the app on their phones and to register their daily body temperature, COVID-19–compatible symptoms, and general health score, as well as any polymerase chain reaction and serological test results. Results A total of 477 hospital staff participated in the study between April 8 and June 2, 2020. Of note, both health-related (n=329) and non–health-related (n=148) professionals participated in the study; over two-thirds of participants (68.8%) were health workers (43.4% physicians and 25.4% nurses), while the proportion of non–health-related workers by center ranged from 40% to 85%. Most participants were female (n=323, 67.5%), with a mean age of 45.4 years (SD 10.6). Regarding smoking habits, 13.0% and 34.2% of participants were current or former smokers, respectively. The daily reporting of symptoms was highly variable across participating hospitals; although we observed a decline in adherence after an initial participation peak in some hospitals, other sites were characterized by low participation rates throughout the study period. Conclusions HEpiTracker is an already available tool to monitor COVID-19 and other infectious diseases in hospital workers. This tool has already been tested in real conditions. HEpiTracker is available in Spanish, Portuguese, and English. It has the potential to become a customized asset to be used in future COVID-19 pandemic waves and other environments. Trial Registration ClinicalTrials.gov NCT04326400; https://clinicaltrials.gov/ct2/show/NCT04326400
BACKGROUND Many factors involved in the onset and clinical course of the ongoing COVID-19 pandemic are still unknown. Although big data analytics and artificial intelligence are widely used in the realms of health and medicine, researchers are only beginning to use these tools to explore the clinical characteristics and predictive factors of patients with COVID-19. OBJECTIVE Our primary objectives are to describe the clinical characteristics and determine the factors that predict intensive care unit (ICU) admission of patients with COVID-19. Determining these factors using a well-defined population can increase our understanding of the real-world epidemiology of the disease. METHODS We used a combination of classic epidemiological methods, natural language processing (NLP), and machine learning (for predictive modeling) to analyze the electronic health records (EHRs) of patients with COVID-19. We explored the unstructured free text in the EHRs within the Servicio de Salud de Castilla-La Mancha (SESCAM) Health Care Network (Castilla-La Mancha, Spain) from the entire population with available EHRs (1,364,924 patients) from January 1 to March 29, 2020. We extracted related clinical information regarding diagnosis, progression, and outcome for all COVID-19 cases. RESULTS A total of 10,504 patients with a clinical or polymerase chain reaction–confirmed diagnosis of COVID-19 were identified; 5519 (52.5%) were male, with a mean age of 58.2 years (SD 19.7). Upon admission, the most common symptoms were cough, fever, and dyspnea; however, all three symptoms occurred in fewer than half of the cases. Overall, 6.1% (83/1353) of hospitalized patients required ICU admission. Using a machine-learning, data-driven algorithm, we identified that a combination of age, fever, and tachypnea was the most parsimonious predictor of ICU admission; patients younger than 56 years, without tachypnea, and temperature <39 degrees Celsius (or >39 ºC without respiratory crackles) were not admitted to the ICU. In contrast, patients with COVID-19 aged 40 to 79 years were likely to be admitted to the ICU if they had tachypnea and delayed their visit to the emergency department after being seen in primary care. CONCLUSIONS Our results show that a combination of easily obtainable clinical variables (age, fever, and tachypnea with or without respiratory crackles) predicts whether patients with COVID-19 will require ICU admission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.