Intense sediment transport and rapid bed evolution are frequently observed under highlyenergetic flows, and bed erosion sometimes is of the same magnitude as the flow itself. Simultaneous simulation of multiple physical processes requires a fully coupled system to achieve an accurate hydraulic and morphodynamical prediction. In this paper, we develop a high-order well-balanced finite-volume method for a new fully coupled two-dimensional hyperbolic system consisting of the shallow water equations with friction terms coupled with the equations modeling the sediment transport and bed evolution. The nonequilibrium sediment transport equation is used to predict the sediment concentration variation. Since both bed-load, sediment entrainment and deposition have significant effects on the bed evolution, an Exner-based equation is adopted together with the Grass bed-load formula and sediment entrainment and deposition models to calculate the morphological process. The resulting 5 × 5 hyperbolic system of balance laws is numerically solved using a Godunov-type central-upwind scheme on a triangular grid. A computationally expensive process of finding all of the eigenvalues of the Jacobian matrices is avoided: The upper/lower bounds on the largest/smallest local speeds of propagation are estimated using the Lagrange theorem. A special discretization of the bed-slope term is proposed to guarantee the well-balanced property of the designed scheme. The proposed fully coupled model is verified on a number of numerical experiments.
This paper aims to develop a robust two-dimensional coupled numerical model based on an unstructured mesh, which can simulate rapidly varying flows over an erodible bed involving wet-dry fronts that is a complex yet practically important problem. Using a modified spatial reconstruction based on the finite volume method, the well-balanced property is preserved, which is important for accurate and efficient simulation of morphological problems. In the present study, the central-upwind scheme is extended to simulation of bed erosion and sediment transport for the first time. It is demonstrated that the proposed scheme shows good accuracy and high efficiency. A modified shallow water system is adopted to improve the model. The shallow water equations, sediment transport equation and bed evolution equation are coupled in the governing system. Multiple test cases are employed to demonstrate the robustness, accuracy, and efficiency of the current model. Furthermore, with a field scale dam-break test case, the efficiency and accuracy of the central-upwind method is verified in comparison with other popular Riemann solvers. The effects of the additional source terms in the adopted modified shallow water equations are also investigated by comparing the numerical results with a laboratory study available in the literature. The proposed scheme can efficiently track wetting and drying interfaces while preserving stability in simulating the bed erosion near the wet-dry fronts. The added terms in shallow water equations can improve the accuracy of the simulation when intense sediment-exchange exists; the central-upwind method adopted in the current study shows great accuracy and efficiency compared with other popular solvers; the developed model is robust, efficient and accurate to deal with various challenging cases.Key words: dam-break flows, central-upwind method, wetting and drying, bed erosion, sediment transport, shallow water equations, finite volume method.Résumé : Le présent article vise à développer un solide modèle numérique couplé bidimensionnel partir d'un maillage non structuré, capable de simuler des écoulements variant rapidement au-dessus d'un lit de rivière érodable et dans lesquels entrent en jeu des fronts d'humectation-assèchement, problème à la fois complexe et très concret. À l'aide d'une reconstitution spatiale modifiée basée sur la méthode des volumes finis, la propriété bien équilibrée est préservée, ce qui est important que la simulation de problèmes morphologique soit précise et efficace. Dans la présente étude, l'utilisation du schéma de type centré-amont est pour la première fois étendue à la simulation de l'érosion des lits et du transport de sédiments. On démontre que le schéma proposé est très efficace et plutôt précis. On adopte une équation de Saint-Venant modifiée pour améliorer le modèle. Les équations de Saint-Venant, l'équation du transport des sédiments et l'équation de l'évolution du lit sont couplées à l'équation principale. De nombreux exemples sont utilisés pour démontrer la solidité,...
Gas generation and migration are important processes that must be considered in a safety case for a deep geological repository (DGR) for the long-term containment of radioactive waste. Expansive soils, such as bentonite-based materials, are widely considered as sealing materials. Understanding their long-term performance as barriers to mitigate gas migration is vital in the design and long-term safety assessment of a DGR. Development and the application of numerical models are key to understanding the processes involved in gas migration. This study builds upon the authors' previous work for developing a hydro-mechanical mathematical model for migration of gas through a low-permeable geomaterial based on the theoretical framework of poromechanics through the contribution of model verification. The study first derives analytical solutions for a 1D steady-state gas flow and 1D transient gas flow problem. Using the finite element method, the model is used to simulate 1D flow through a confined cylindrical sample of near-saturated low-permeable soil under a constant volume boundary stress condition. Verification of the numerical model is performed by comparing the pore-gas pressure evolution and stress evolution to that of the results of the analytical solution. The results of the numerical model closely matched those of the analytical solutions. Future studies will attempt to improve upon the model complexity and investigate processes and material characteristics that can enhance gas migration in a nearly saturated swelling geomaterial.
Supercritical fluid extraction (SFE) was applied to investigate the removal of petroleum hydrocarbons (PHCs) from contaminated soils. Per an initial set of tests for different extraction modes and time durations, the combination of 10 min static mode followed by 10 min dynamic mode, repeated for 3 cycles for a total time of 60 min resulted in the highest PHCs removal percentages. SFE experiments were performed at 33 MPa pressure and 75°C temperature to investigate the influence of soil texture and grain size. Three types of soils were formed and then were spiked with diesel fuel with a ratio of 5 wt%. Soil A, B and C had different particle sizes and were categorized as sand, silt loam and clay, respectively. Soil A (sand) which had the largest particle size resulted in the highest total petroleum hydrocarbon fractions (TPHF), sum of PHC F2, F3 and F4 fractions, removal percentage (90.4%) while soil C (clay) with the smallest particle size and the highest clay content led to the lowest TPHF removal percentage (47.4%). PHC F2 removal percentage for soil A (sand) was 27.3% greater than soil B (silt loam), and the removal efficiency for soil B was 20.4% higher than soil C (clay). While a similar trend was observed for the extraction of PHC F3, the extraction efficiency of PHC F4 for soil A, B and C were not statistically significant. Regarding soil A (sand), the extraction efficiency for PHC F2, PHC F3 and PHC F4 were 98.4%, 92.7%, and 50.2%, respectively. For soil C (clay), the removal efficiency of all PHC fractions were not statistically different.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.