BackgroundEstrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer.Patients and methodsTo identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287–395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots.ResultsWe identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3′ partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations.ConclusionsCollectively, these data indicate that N-terminal ESR1 fusions involving exons 6–7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.
Purpose: Bromodomain and extraterminal (BET) proteins are key epigenetic transcriptional regulators, inhibition of which may suppress oncogene expression. We report results from 2 independent first-inhuman phase 1/2 dose-escalation and expansion, safety and tolerability studies of BET inhibitors INCB054329 (study INCB 54329-101; NCT02431260) and INCB057643 (study INCB 57643-101; NCT02711137). Patients and Methods: Patients (≥18 years) with advanced malignancies, ≥1 prior therapy, and adequate organ functions received oral INCB054329 (monotherapy) or INCB057643 (monotherapy or in combination with standard-of-care) in 21-day cycles (or 28-day cycles depending on standard-of-care combination). Primary endpoints were safety and tolerability. Results: Sixty-nine and 134 patients received INCB054329 and INCB057643, respectively. Study INCB 54329-101 has been completed; INCB 57643-101 is currently active, but not recruiting (no patients were receiving treatment as of January 8, 2019). Terminal elimination half-life was shorter for INCB054329 versus INCB057643 (mean [SD], 2.24 [2.03] vs. 11.1 [8.27] hours). INCB054329 demonstrated higher interpatient variability in oral clearance versus INCB057643 (CV%, 142% vs. 45.5%). Most common (>20%) any-grade treatment-related adverse events were similar for both drugs (INCB054329; INCB057643): nausea (35%; 30%), thrombocytopenia (33%; 32%), fatigue (29%; 30%), decreased appetite (26%; 22%). Two confirmed complete responses and 4 confirmed partial responses with INCB057643 were reported as best responses. Conclusions: INCB057643 exhibited a more favorable PK profile versus INCB054329; exposure-dependent thrombocytopenia was observed with both drugs which limited the target inhibition that could be safely maintained. Further efforts are required to identify patient populations that can benefit most, and an optimal dosing scheme to maximize therapeutic index.
BackgroundAntibodies targeting programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) have shown clinical activity in the treatment of metastatic renal cell carcinoma (mRCC). This phase Ib cohort of the JAVELIN Solid Tumor trial assessed the efficacy and safety of avelumab (anti–PD-L1) monotherapy in patients with mRCC as either first-line (1 L) or second-line (2 L) treatment.MethodsPatients with mRCC with a clear-cell component who were treatment naive (1 L subgroup) or had disease progression after one prior line of therapy (2 L subgroup) received avelumab 10 mg/kg intravenous infusion every 2 weeks. Endpoints included confirmed best overall response, duration of response (DOR), progression-free survival (PFS), overall survival (OS), PD-L1 expression, and safety.ResultsA total of 62 patients were enrolled in the 1 L subgroup, and 20 patients were enrolled in the 2 L subgroup. In the 1 L and 2 L subgroups, confirmed objective response rates were 16.1 and 10.0%, median DOR was 9.9 months (95% confidence interval [CI], 2.8–not evaluable) and not evaluable (95% CI, 6.9–not evaluable), median PFS was 8.3 months (95% CI, 5.5–9.5) and 5.6 months (95% CI, 2.3–9.6), and median OS was not evaluable (95% CI, not evaluable) and 16.9 months (95% CI, 8.3–not evaluable), respectively. Treatment-related adverse events (TRAEs) of any grade occurred in 51 patients in the 1 L subgroup (82.3%) and 14 patients in the 2 L subgroup (70.0%). Grade ≥ 3 TRAEs occurred in eight patients in the 1 L subgroup (12.9%) and one patient in the 2 L subgroup (5.0%). No treatment-related deaths occurred.ConclusionAvelumab showed clinical activity and a manageable safety profile in both the 1 L and 2 L treatment setting in patients with mRCC. These data support the use of avelumab in combination with other agents in mRCC.Trial registrationClinicalTrials.gov: NCT01772004; registered 21 January, 2013.
Investigating targeted therapies can be challenging due to diverse tumor mutations and slow patient accrual for clinical studies. The Signature Program is a series of 8 phase 2, agent-specific basket protocols using a rapid study start-up approach involving no predetermined study sites. Each protocol evaluated 1 agent (buparlisib, dovitinib, binimetinib, encorafenib, sonidegib, BGJ398, ceritinib, or ribociclib) in patients with solid or hematologic malignancies and an actionable mutation. The primary endpoint of each study was the clinical benefit rate (ie, complete or partial response, or stable disease) at 16 weeks. A total of 192 individual sites were opened in the United States, with a median start-up time of 3.6 weeks. The most common tumor types among the 595 treated patients were colorectal (9.2%), non-small cell lung adenocarcinoma (9.1%), and ovarian (8.4%). Frequent genetic alterations were in PIK3CA, RAS, p16, and PTEN. Overall, 30 partial or complete responses were observed with 6 compounds in 16 tumor types. The Signature Program presents a unique and successful approach for rapid signal finding across multiple tumors and allowed various agents to be evaluated in patients with rare alterations. Incorporating these program features in conventional studies could lead to improved trial efficiencies and patient outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.