The aim of the present study was to compare the modulation of heart rate in a group of postmenopausal women to that of a group of young women under resting conditions on the basis of R-R interval variability. Ten healthy postmenopausal women (mean ± SD, 58.3 ± 6.8 years) and 10 healthy young women (mean ± SD, 21.6 ± 0.82 years) were submitted to a control resting electrocardiogram (ECG) in the supine and sitting positions over a period of 6 min. The ECG was obtained from a one-channel heart monitor at the CM5 lead and processed and stored using an analog to digital converter connected to a microcomputer. R-R intervals were calculated on a beat-to-beat basis from the ECG recording in real time using a signal-processing software. Heart rate variability (HRV) was expressed as standard deviation (RMSM) and mean square root (RMSSD). In the supine position, the postmenopausal group showed significantly lower (P<0.05) median values of RMSM (34.9) and RMSSD (22.32) than the young group (RMSM: 62.11 and RMSSD: 49.1). The same occurred in the sitting position (RMSM: 33.0 and RMSSD: 18.9 compared to RMSM: 57.6 and RMSSD: 42.8 for the young group). These results indicate a decrease in parasympathetic modulation in postmenopausal women compared to young women which was possibly due both to the influence of age and hormonal factors. Thus, time domain HRV proved to be a noninvasive and sensitive method for the identification of changes in autonomic modulation of the sinus node in postmenopausal women.
Background: Chronic heart failure (HF) is a syndrome characterized by reduced cardiac output in relation to the metabolic needs of the organism, as well as metabolic and neurohormonal axis abnormalities. Symptoms such as fatigue and dyspnoea are notorious and stress tests are widely used to assess functional capacity, prognosis and effectiveness of therapeutic interventions in this syndrome.
The study of myocardial contractility, based on the new anatomical concepts that govern cardiac mechanics, represents a promising strategy of analysis of myocardial adaptations related to physical training in the context of post-infarction.We investigated the influence of aerobic training on physical capacity and on the evaluation parameters of left ventricular contraction mechanics in patients with myocardial infarction.Thirty-one patients (55.1 ± 8.9 years) who had myocardial infarction in the anterior wall were prospectively investigated in three groups: interval training group (ITG) (n = 10), moderate training group (MTG) n = 10) and control group (CG) (n = 10). Before and after 12 weeks of clinical follow-up, patients underwent cardiopulmonary exercise testing and cardiac magnetic resonance imaging. The trained groups performed supervised aerobic training on treadmill, in two different intensities.A statistically significant increase in peak oxygen uptake (VO2) was observed in the ITG (19.2 ± 5.1 at 21.9 ± 5.6 ml/kg/min, p < 0.01) and in the MTG 18.8 ± 3.7 to 21.6 ± 4.5 ml/kg/min, p < 0.01). The GC did not present a statistically significant change in peak VO2. A statistically significant increase in radial strain (STRAD) was observed in the CG: basal STRAD (57.4 ± 16.6 to 84.1 ± 30.9%, p < 0.05), medial STRAD (57.8 ± 27, 9 to 74.3 ± 36.1%, p < 0.05) and apical STRAD (38.2 ± 26.0 to 52.4 ± 29.8%, p < 0.01). The trained groups did not present a statistically significant change of the radial strain.The present study points to a potential clinical application of the parameters of ventricular contraction mechanics analysis, especially radial strain, to discriminate post-infarction myocardial adaptations between patients submitted or not to aerobic training programs.
OBJECTIVE:The potential influence of magnesium on exercise performance is a subject of increasing interest. Magnesium has been shown to have bronchodilatatory properties in asthma and chronic obstructive pulmonary disease patients. The aim of this study was to investigate the effects of acute magnesium IV loading on the aerobic exercise performance of stable chronic obstructive pulmonary disease patients.METHODS:Twenty male chronic obstructive pulmonary disease patients (66.2±8.3 years old, FEV1: 49.3±19.8%) received an IV infusion of 2 g of either magnesium sulfate or saline on two randomly assigned occasions approximately two days apart. Spirometry was performed both before and 45 minutes after the infusions. A symptom-limited incremental maximal cardiopulmonary test was performed on a cycle ergometer at approximately 100 minutes after the end of the infusion. ClinicalTrials.gov: NCT00500864RESULTS:Magnesium infusion was associated with significant reductions in the functional residual capacity (-0.41 l) and residual volume (-0.47 l), the mean arterial blood pressure (-5.6 mmHg) and the cardiac double product (-734.8 mmHg.bpm) at rest. Magnesium treatment led to significant increases in the maximal load reached (+8 w) and the respiratory exchange ratio (0.06) at peak exercise. The subgroup of patients who showed increases in the work load equal to or greater than 5 w also exhibited significantly greater improvements in inspiratory capacity (0.29 l).CONCLUSIONS:The acute IV loading of magnesium promotes a reduction in static lung hyperinflation and improves the exercise performance in stable chronic obstructive pulmonary disease patients. Improvements in respiratory mechanics appear to be responsible for the latter finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.