In this paper, a multiple ensemble neural network model with fuzzy response aggregation for the COVID-19 time series is presented. Ensemble neural networks are composed of a set of modules, which are used to produce several predictions under different conditions. The modules are simple neural networks. Fuzzy logic is then used to aggregate the responses of several predictor modules, in this way, improving the final prediction by combining the outputs of the modules in an intelligent way. Fuzzy logic handles the uncertainty in the process of making a final decision about the prediction. The complete model was tested for the case of predicting the COVID-19 time series in Mexico, at the level of the states and the whole country. The simulation results of the multiple ensemble neural network models with fuzzy response integration show very good predicted values in the validation data set. In fact, the prediction errors of the multiple ensemble neural networks are significantly lower than using traditional monolithic neural networks, in this way showing the advantages of the proposed approach.
In this paper, the latest global COVID-19 pandemic prediction is addressed. Each country worldwide has faced this pandemic differently, reflected in its statistical number of confirmed and death cases. Predicting the number of confirmed and death cases could allow us to know the future number of cases and provide each country with the necessary information to make decisions based on the predictions. Recent works are focused only on confirmed COVID-19 cases or a specific country. In this work, the firefly algorithm designs an ensemble neural network architecture for each one of 26 countries. In this work, we propose the firefly algorithm for ensemble neural network optimization applied to COVID-19 time series prediction with type-2 fuzzy logic in a weighted average integration method. The proposed method finds the number of artificial neural networks needed to form an ensemble neural network and their architecture using a type-2 fuzzy inference system to combine the responses of individual artificial neural networks to perform a final prediction. The advantages of the type-2 fuzzy weighted average integration (FWA) method over the conventional average method and type-1 fuzzy weighted average integration are shown.Keywords Ensemble neural networks Á COVID-19 Á Time series prediction Á Type-2 fuzzy logic Á Firefly algorithm Communicated by V. E. Balas.
In this work a genetic algorithm for ensemble neural network architecture optimization applied to COVID-19 time series prediction is proposed. The main objective of this paper is to show the results of the optimized number of neurons in two hidden layers of an ensemble artificial neural network used for time series prediction using a real genetic algorithm. The time series dataset used in this work is the confirmed and death cases of COVID-19 of 12 states of Mexico (and information about the whole country). Being the COVID-19 the pandemic that has been affecting many lives in Mexico, for this reason, this work seeks to find a prediction for confirmed and death cases in this country.
We describe in this paper an approach for predicting the COVID-19 time series in the world using a hybrid ensemble modular neural network, which combines nonlinear autoregressive neural networks. At the level of the modular neural network, which is formed with several modules (ensembles in this case), the modules are designed to be efficient predictors for each country. In this case, an integrator is used to combine the outputs of the modules, in this way achieving the goal of predicting a set of countries. At the level of the ensembles, forming a part of the modular network, these are constituted by a set of modules, which are nonlinear autoregressive neural networks that are designed to be efficient predictors under particular conditions for each country. In each ensemble, the results of the modules are combined with an aggregator to achieve a better and improved result for the ensemble. Publicly available datasets of coronavirus cases around the globe from the last months have been used in the analysis. Interesting conclusions have been obtained that could be helpful in deciding the best strategies in dealing with this virus for countries in their fight against the coronavirus pandemic. In addition, the proposed approach could be helpful in proposing strategies for similar countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.