A matrix framework is developed for single and multispan micro-cantilevers Timoshenko beam models of use in atomic force microscopy (AFM). They are considered subject to general forcing loads and boundary conditions for modeling tipsample interaction. Surface effects are considered in the frequency analysis of supported and cantilever microbeams. Extensive use is made of a distributed matrix fundamental response that allows to determine forced responses through convolution and to absorb non-homogeneous boundary conditions. Transients are identified from intial values of permanent responses. Eigenanalysis for determining frequencies and matrix mode shapes is done with the use of a fundamental matrix response that characterizes solutions of a damped second-order matrix differential equation. It is observed that surface effects are influential for the natural frequency at the nanoscale. Simulations are performed for a bi-segmented free-free beam and with a micro-cantilever beam actuated by a piezoelectric layer laminated in one side.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.