The new concepts of self-adjoint equations formulated by Ibragimov and Gandarias are applied to a class of fifth-order evolution equations. Then, from Ibragimov's theorem on conservation laws, conservation laws for the generalized Kawahara equation, simplified Kahawara equation and modified simplified Kawahara equation are established.
We consider a family of homogeneous nonlinear dispersive equations with two arbitrary parameters. Conservation laws are established from the point symmetries and imply that the whole family admits square integrable solutions. Recursion operators are found for two members of the family investigated. For one of them, a Lax pair is also obtained, proving its complete integrability. From the Lax pair, we construct a Miura-type transformation relating the original equation to the Korteweg-de Vries (KdV) equation. This transformation, on the other hand, enables us to obtain solutions of the equation from the kernel of a Schrödinger operator with potential parametrized by the solutions of the KdV equation. In particular, this allows us to exhibit a kink solution to the completely integrable equation from the 1-soliton solution of the KdV equation. Finally, peakon-type solutions are also found for a certain choice of the parameters, although for this particular case the equation is reduced to a homogeneous second-order nonlinear evolution equation.
Resumo Neste trabalho, mostramos que uma equação evolutiva de terceira ordem que admite a solução Soliton, admite também a solução do tipo Peakon.Palavras-chave. Equação evolutiva, simetrias de Lie, Soliton, Peakon.
IntroduçãoImagine que você está sentado em um parque, e que nesse parque passe um rio raso, de forma que seu comprimento seja muito maior que sua largura. Suponha que você esteja distante o suficiente para enxergar um pato nadando sobre o rio. Em um dado momento o pato para de nadar e fica boiando, o que provoca naágua uma pequena onda que começa a percorrer o rio no sentido ao qual o pato estava nadando. Essa onda se mantem, aos seus olhos inalterada com respeito a velocidade, amplitude e altura. Depois de se afastar consideravelmente do pato, a onda simplesmente se dissipa. Esse fenômeno foi estudado por Russel em 1834, e posteriormente por Korteweg e seu aluno G de Vries em 1885, veja [4]. A equação que descreve tal fenômenoé dada por u t − uu x − u xxx = 0 eé conhecida por equação de Korteweg-de Vries, ou simplesmente equação de KdV. A equação de KdV possui a soluçãoqueé chamada soliton. Em um recente trabalho [5], os autores procuravam equações admitindo soluções deste tipo usando algoritmos genéticos para a busca. Eles esperavam obter, como um primeiro exemplo, a própria equação KdV. Todavia, descobriram acidentalmente a equação u t + 2a u u x u xx − au xxx = 0,
In this paper we study a new third order evolution equation discovered a couple of years ago using a genetic programming. We show that the Lie symmetries of this equation corresponds to space and time translations, as well as a dilation on the space of independent variables and another one with respect to the depend variable. From its symmetries, explicit solutions of the equation are obtained, some of them expressed in terms of the solutions of the Airy equation and Abel equation of the second kind. Additionally, by using the direct method we establish three conservation laws for the equation, one of them new.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.