In this work, we propose a framework to enhance the communication abilities of speech-impaired patients in an intensive care setting via reading lips. Medical procedure, such as a tracheotomy, causes the patient to lose the ability to utter speech with little to no impact on the habitual lip movement. Consequently, we developed a framework to predict the silently spoken text by performing visual speech recognition, i.e., lip-reading. In a two-stage architecture, frames of the patient’s face are used to infer audio features as an intermediate prediction target, which are then used to predict the uttered text. To the best of our knowledge, this is the first approach to bring visual speech recognition into an intensive care setting. For this purpose, we recorded an audio-visual dataset in the University Hospital of Aachen’s intensive care unit (ICU) with a language corpus hand-picked by experienced clinicians to be representative of their day-to-day routine. With a word error rate of 6.3%, the trained system reaches a sufficient overall performance to significantly increase the quality of communication between patient and clinician or relatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.