Science has a critical role to play in guiding more sustainable development trajectories. Here, we present the Sustainable Amazon Network ( Rede Amazônia Sustentável , RAS): a multidisciplinary research initiative involving more than 30 partner organizations working to assess both social and ecological dimensions of land-use sustainability in eastern Brazilian Amazonia. The research approach adopted by RAS offers three advantages for addressing land-use sustainability problems: (i) the collection of synchronized and co-located ecological and socioeconomic data across broad gradients of past and present human use; (ii) a nested sampling design to aid comparison of ecological and socioeconomic conditions associated with different land uses across local, landscape and regional scales; and (iii) a strong engagement with a wide variety of actors and non-research institutions. Here, we elaborate on these key features, and identify the ways in which RAS can help in highlighting those problems in most urgent need of attention, and in guiding improvements in land-use sustainability in Amazonia and elsewhere in the tropics. We also discuss some of the practical lessons, limitations and realities faced during the development of the RAS initiative so far.
Fossils provide primary material evidence for the pattern and timing of evolution. The newly discovered “beast ants” from mid-Cretaceous Burmite, †Camelospheciagen. nov., display an exceptional combination of plesiomorphies, including absence of the metapleural gland, and a series of unique apomorphies. Females and males, represented by †C. fossorsp. nov. and †C. venatorsp. nov., differ in a number of features which suggest distinct sexual biologies. Combined-evidence phylogenetic analysis recovers †Camelosphecia and †Camelomecia as a clade which forms the extinct sister group of the Formicidae. Notably, these genera are only known from alate males and females; workers, if present, have yet to be recovered. Based on ongoing study of the total Aculeata informed by the beast ant genera, we provide a brief diagnosis of the Formicoidea. We also provide the first comprehensive key to the major groupings of Mesozoic Formicoidea, alongside a synoptic classification in which †Zigrasimeciinaestat. nov. and †Myanmyrma marauderacomb. nov. are recognized. Finally, a brief diagnosis of the Formicoidea is outlined.
It is generally assumed that Cretaceous stem ants were obligately eusocial, because of the presence of wingless adult females, yet the available evidence is ambiguous. Here, we report the syninclusion of a pupa and adult of a stem ant species from Mid-Cretaceous amber. As brood are immobile, the pupa was likely to have been transported by an adult. Therefore, the fossil substantiates the hypothesis that wingless females were cooperators, thus these were true ‘workers’. Re-examination of all described Cretaceous ant species reveals that winged–wingless diphenism – hence a variable dispersal capacity – may have been ancestral to the total clade of the ants, and that highly specialized worker-specific phenotypes evolved in parallel between the stem and crown groups. The soft-tissue preservation of the fossil is exceptional, demonstrating the possibility of analysing the development of the internal anatomy in stem ants. Based on the highest-resolution µ-CT scans of stem ants to date, we describe †Gerontoformica sternorhabda sp. nov., redescribe †G. gracilis, redefine the species group classification of †Gerontoformica, and provide a key to the species of the genus. Our work clarifies the species boundaries of †Gerontoformica and renders fossils relevant to the discussion of eusocial evolution in a way that has heretofore been intractable.
Ants, an ecologically successful and numerically dominant group of animals, play key ecological roles as soil engineers, predators, nutrient recyclers, and regulators of plant growth and reproduction in most terrestrial ecosystems. Further, ants are widely used as bioindicators of the ecological impact of land use. We gathered information of ant species in the Atlantic Forest of South America. The ATLANTIC ANTS data set, which is part of the ATLANTIC SERIES data papers, is a compilation of ant records from collections (18,713 records), unpublished data (29,651 records), and published sources (106,910 records; 1,059 references), including papers, theses, dissertations, and book chapters published from 1886 to 2020. In total, the data set contains 153,818 ant records from 7,636 study locations in the Atlantic Forest, representing 10 subfamilies, 99 genera, 1,114 ant species identified with updated taxonomic certainty, and 2,235 morphospecies codes. Our data set reflects the heterogeneity in ant records, which include ants sampled at the beginning of the taxonomic history of myrmecology (the 19th and 20th centuries) and more recent ant surveys designed to address specific questions in ecology and biology. The data set can be used by researchers to develop strategies to deal with different macroecological and region‐wide questions, focusing on assemblages, species occurrences, and distribution patterns. Furthermore, the data can be used to assess the consequences of changes in land use in the Atlantic Forest on different ecological processes. No copyright restrictions apply to the use of this data set, but we request that authors cite this data paper when using these data in publications or teaching events.
In the present study, the first cytogenetic data was obtained for the ant species Strumigenys louisianae, from a genus possessing no previous cytogenetic data for the Neotropical region. The chromosome number observed was 2n = 4, all possessing metacentric morphology. Blocks rich in GC base pairs were observed in the interstitial region of the short arm of the largest chromosome pair, which may indicate that this region corresponds to the NORs. The referred species presented the lowest chromosome number observed for the subfamily Myrmicinae and for the Hymenoptera found in the Neotropical region. Observation of a low chromosome number karyotype has been described in Myrmecia croslandi, in which the occurrence of tandem fusions accounts for the most probable rearrangement for its formation. The accumulation of cytogenetic data may carry crucial information to ensure deeper understanding of the systematics of the tribe Dacetini.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.