Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM.
Pain behavior and awareness are characterized by heightened alertness and anxiety, which begin to disappear as soon as the curative process starts. The present study aimed to quantify c-fos expression in rat spinal cords and brains after a surgical stimulus and with preoperative or postoperative acupuncture. Animals were randomly divided into preoperative and postoperative groups and were then further divided into control, manual acupuncture (MA), or electroacupuncture (EA) groups. Expression of c-fos was quantified using immunohistochemistry. The collected data were analyzed using the t test at a 5% probability level. Presurgery and postsurgery spinal cord c-fos expressions were similar in all of the treatment groups. In the control rats, c-fos expression was higher before surgery than after surgery, contradicting the expected outcome of acupuncture and preemptive analgesia. After treatment, the expression of c-fos in the brains of the rats in the MA and the EA groups was reduced compared with that of the rats in the control group. These findings suggest that acupuncture used as preemptive analgesia in rats is a useful model for studying its application in human treatment.
Fungal recognition by Dectin-1 receptor triggers a series of cellular mechanisms involved in a protective activation of the immune system. In this study, we aimed to evaluate the participation of Dectin-1 receptor in the induction of IL-8, TNF-α, IL-12, IL-10 and IL-17A secretion by human monocytes activated with different cytokines, and challenged in vitro with Paracoccidioides brasiliensis (P. brasiliensis). Our results show that monocytes challenged with P. brasiliensis (Pb265) are able to produce IL-12, IL-8, IL-17, IL-10 and TNF-α. Dectin-1 receptor blockage decreased the IL-12, IL-17, IL-10 and TNF-α levels indicating the participation of such receptor in the induction of these cytokines. Only IL-8 production was not affected by the blockage. Cells activation with different cytokines showed that GM-CSF was able to induce secretion of all cytokines and the receptor blockage prior to the challenge also decreased the cytokine secretion, except IL-8. Monocytes activated with TNF-α promoted IL-8, IL-10 and TNF-α production, whereas stimulation with IFN-γ promoted mainly IL-12 and TNF-α. Thus, these findings bring new and important knowledge about Dectin-1 participation in cytokines production by monocytes challenged with Pb265.
Paracoccidioidomycosis (PCM) is a neglected mycosis most commonly occurring in Latin America. The etiologic agents are thermo dimorphic fungi of the genus Paracoccidioides, and cause an important granulomatous response in affected tissues. The Botucatu Medical School, from São Paulo State University (UNESP), is a PCM study pole, located in São Paulo State Midwest region, which is classified as a hyperendemic area in the Southeast region in Brazil. This study aimed to perform a retrospective epidemiological, geographical, and clinical analysis by the information available in medical records. It was listed as socio-demographic data along with clinical characteristics from patients diagnosed and treated during a 10-year period in Botucatu, totaling 177 patients with Paracoccidioidomycosis confirmed by the histopathological test. It was observed that the main clinical presentation was the chronic type (76,3%), most commonly identified in white male individuals over the age of 29 years old, smokers, males and alcoholics, providing evidences for the first time that white individuals were more affected by the disease, in comparison to non-white individuals that may be more resistant to infection. This data opens new avenues for study within ancestry, resistance and susceptibility in paracoccidioidomycosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.