Quantum communication brings radically new capabilities that are provably impossible to attain in any classical network. Here, we take the first step from a physics experiment to a fully fledged quantum internet system. We propose a functional allocation of a quantum network stack and construct the first physical and link layer protocols that turn ad-hoc physics experiments producing heralded entanglement between quantum processors into a well-defined and robust service. This lays the groundwork for designing and implementing scalable control and application protocols in platform-independent software. To design our protocol, we identify use cases, as well as fundamental and technological design considerations of quantum network hardware, illustrated by considering the state-of-the-art quantum processor platform available to us (Nitrogen-Vacancy (NV) centers in diamond). Using a purpose built discrete-event simulator for quantum networks, we examine the robustness and performance of our protocol using extensive simulations on a supercomputing cluster. We perform a full implementation of our protocol, where we successfully validate the physical simulation model against data gathered from the NV hardware. We first observe that our protocol is robust even in a regime of exaggerated losses of classical control messages with only little impact on the performance of the system.We proceed to study the performance of our protocols for 169 distinct simulation scenarios, including tradeoffs between traditional performance metrics such as throughput and the quality of entanglement. Finally, we initiate the study of quantum network scheduling strategies to optimize protocol performance for different use cases. 1 arXiv:1903.09778v1 [quant-ph]
In order to bring quantum networks into the real world, we would like to determine the requirements of quantum network protocols including the underlying quantum hardware. Because detailed architecture proposals are generally too complex for mathematical analysis, it is natural to employ numerical simulation. Here we introduce NetSquid, the NETwork Simulator for QUantum Information using Discrete events, a discrete-event based platform for simulating all aspects of quantum networks and modular quantum computing systems, ranging from the physical layer and its control plane up to the application level. We study several use cases to showcase NetSquid’s power, including detailed physical layer simulations of repeater chains based on nitrogen vacancy centres in diamond as well as atomic ensembles. We also study the control plane of a quantum switch beyond its analytically known regime, and showcase NetSquid’s ability to investigate large networks by simulating entanglement distribution over a chain of up to one thousand nodes.
Composability and modularity in relation to physics are useful properties in the development of cyber-physical systems that interact with their environment. The bond-graph modeling language offers these properties. When systems structures conform to the bond-graph notation, all interfaces are defined as physical "power ports" which are guaranteed to exchange power. Having a single type of interface is a key feature when aiming for modular, composable systems. Furthermore, the facility to monitor energy flows in the system through power ports allows the definition of system-wide properties based on component properties. In this paper we present a metamodel of the bond-graph language aimed to facilitate the description and deployment of software components for cyber-physical systems. This effort provides a formalized description of standardized interfaces that enable physics-conformal interconnections. We present a use-case showing that the metamodel enables composability, reusability, extensibility, replaceability and independence of control software components.This research has received funding from the RobMoSys project (EU project No. 732410) under the subproject EG-IPC. https://robmosys.eu/eg-ipc/.
The capability to find individuals using CCTV cameras is important for surveillance applications at large areas such as railway stations, airports and shopping centers. However, it is laborious to track and trace people over multiple cameras post incident. In this paper, we describe the live demonstration of our interactive re-identification system in a railway station. The system performs real-time track generation in multiple cameras and live re-identification and refinding of suspects which was live demonstrated in Poland. The system allows fast interactive retrieval of an individual by showing only similar candidates. An operator can find the origin or destination of a person more efficiently, especially over large time and space intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.