The progressive increase in hydrogen technologies’ role in transport, mobility, electrical microgrids, and even in residential applications, as well as in other sectors is expected. However, to achieve it, it is necessary to focus efforts on improving features of hydrogen-based systems, such as efficiency, start-up time, lifespan, and operating power range, among others. A key sector in the development of hydrogen technology is its production, renewable if possible, with the objective to obtain increasingly efficient, lightweight, and durable electrolyzers. For this, scientific works are currently being produced on stacks technology improvement (mainly based on two technologies: polymer electrolyte membrane (PEM) and alkaline) and on the balance of plant (BoP) or the industrial plant (its size depends on the power of the electrolyzer) that runs the stack for its best performance. PEM technology offers distinct advantages, apart from the high cost of its components, its durability that is not yet guaranteed and the availability in the MW range. Therefore, there is an open field of research for achievements in this technology. The two elements to improve are the stacks and BoP, also bearing in mind that improving BoP will positively affect the stack operation. This paper develops the design, implementation, and practical experimentation of a BoP for a medium-size PEM electrolyzer. It is based on the realization of the optimal design of the BoP, paying special attention to the subsystems that comprise it: the power supply subsystem, water management subsystem, hydrogen production subsystem, cooling subsystem, and control subsystem. Based on this, a control logic has been developed that guarantees efficient and safe operation. Experimental results validate the designed control logic in various operating cases, including warning and failure cases. Additionally, the experimental results show the correct operation in the different states of the plant, analyzing the evolution of the hydrogen flow pressure and temperature. The capacity of the developed PEM electrolysis plant is probed regarding its production rate, wide operating power range, reduced pressurization time, and high efficiency.
This study presents the application of the finite element method integrated with Terzaghi’s principle. The definition of a model in oedometric or confinement conditions for settlement estimation of a building after the construction of a tunnel, including the effect of Terzaghi’s principle, is an unresolved problem. The objectives of this work include the demonstration of the need for a minimum of three methodological states to estimate said settlement. For this, a specific methodology is applied to a case study, with eight load steps and four types of coarse-grained soils. In the studied case, two layers of 50 m and 5 m with different degrees of saturation are overlaying an assumed impermeable rock layer. The excavation of a tunnel of 15 m in diameter at a depth of 30 m with drainage lining inside the tunnel is assumed. The minimum distance from the tunnel’s outline to the mat foundation is 15.8 m. It is determined that the settlement, according to Terzaghi’s principle, is around 11% of the total settlement for the most compacted soil types, reaching 35% for the loose soil type, from the tunnel’s outline. In the mat foundation, it implies an increase in the differential settlement of up to 12%. It shows a nonlinear relationship between some of the variables in the analysis. To detect the collapse due to uplifting the tunnel invert, it was determined that it was not appropriate to model in oedometric conditions. The novelty of the investigation relies on identifying and determining the need for a minimum of three states for methodological purposes for a proper quantification of the total settlement: (i) before the construction of the tunnel, (ii) immediately after the excavation of the tunnel, but without groundwater inflow into the tunnel, and (iii) after the tunnelling, with stabilised groundwater inflow into the tunnel.
This paper explains the mathematical foundations of a method for modelling semi-rigid unions. The unions are modelled using rotational rather than linear springs. A nonlinear second-order analysis is required, which includes both the effects of the flexibility of the connections as well as the geometrical nonlinearity of the elements. The first task in the implementation of a 2D Beam element with semi-rigid unions in a nonlinear finite element method (FEM) is to define the vector of internal forces and the tangent stiffness matrix. After defining the formula for this vector and matrix in the context of a semi-rigid steel frame, an iterative adjustment of the springs is proposed. This setting allows a moment–rotation relationship for some given load parameters, dimensions, and unions. Modelling semi-rigid connections is performed using Frye and Morris’ polynomial model. The polynomial model has been used for type-4 semi-rigid joints (end plates without column stiffeners), which are typically semi-rigid with moderate structural complexity and intermediate stiffness characteristics. For each step in a non-linear analysis required to adjust the matrix of tangent stiffness, an additional adjustment of the springs with their own iterative process subsumed in the overall process is required. Loops are used in the proposed computational technique. Other types of connections, dimensions, and other parameters can be used with this method. Several examples are shown in a correlated analysis to demonstrate the efficacy of the design process for semi-rigid joints, and this is the work’s application content. It is demonstrated that using the mathematical method presented in this paper, semi-rigid connections may be implemented in the designs while the stiffness of the connection is verified.
Tidal energy represents a clean and sustainable source of energy generation that can address renewable energy challenges, especially the global challenge of optimizing alternatives for stable supply. Although tidal stream energy extraction technology is in the early stages of development, it shows great potential compared to other renewable energy sources. The main objective of this research is to provide a digital tool for the optimization of the installation of turbines through fuzzy logic. The methodology in this study includes the design and development of a fuzzy-logic-based tool for this purpose. Design criteria included parameters such as salinity, temperature, currents, depth, and water viscosity, which affect the performance of tidal turbines. These parameters are obtained from the geographic location of the installation. A decision-making system is provided to support the tool. The designed fuzzy logic system evaluates the suitability of different turbine locations and presents the results through graphics and probability of success percentages. The results indicate that currents and temperatures are the most limiting factors in terms of potential turbine locations. The program provides a practical and efficient tool for optimizing the selection of tidal turbines and generating energy from ocean currents. This tool is evaluated and validated through different cases. With this approach, the aim is to encourage the development of tidal energy and its adoption worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.