Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects.We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives. Geosphere-Biosphere Program (IGBP) and DIVERSITAS, the TRY database (TRY-not an acronym, rather a statement of sentiment; https ://www.try-db.org; Kattge et al., 2011) was proposed with the explicit assignment to improve the availability and accessibility of plant trait data for ecology and earth system sciences. The Max Planck Institute for Biogeochemistry (MPI-BGC) offered to host the database and the different groups joined forces for this community-driven program. Two factors were key to the success of TRY: the support and trust of leaders in the field of functional plant ecology submitting large databases and the long-term funding by the Max Planck Society, the MPI-BGC and the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, which has enabled the continuous development of the TRY database.
Summary1. The effects of the present biodiversity crisis have been largely focused on the loss of species. However, a missed component of biodiversity loss that often accompanies or even precedes species disappearance is the extinction of ecological interactions. 2. Here, we propose a novel model that (i) relates the diversity of both species and interactions along a gradient of environmental deterioration and (ii) explores how the rate of loss of ecological functions, and consequently of ecosystem services, can be accelerated or restrained depending on how the rate of species loss covaries with the rate of interactions loss. 3. We find that the loss of species and interactions are decoupled, such that ecological interactions are often lost at a higher rate. This implies that the loss of ecological interactions may occur well before species disappearance, affecting species functionality and ecosystems services at a faster rate than species extinctions. We provide a number of empirical case studies illustrating these points. 4. Our approach emphasizes the importance of focusing on species interactions as the major biodiversity component from which the 'health' of ecosystems depends.
Summary 1Little is known about the consequences of seed-disperser activity for plant demography. We compared the spatial patterns of seed dispersal generated by frugivorous birds with those of seedling survival for the shrub Olea europaea. We examined the relative importance of dispersal in determining plant recruitment and tested whether the initial dispersal pattern persisted throughout recruitment. 2 We quanti®ed the processes aecting each stage of regeneration (seed within a ripe fruit, dispersed seed, seedling and sapling) in dierent microhabitats, and evaluated transition probabilities between stages. We could then determine the overall probability of a seed in a ripe fruit becoming a sapling, and compare the probability of such an event occurring in dierent microhabitats. 3 Only 9.3% of the emerged seedlings reached the sapling stage, whereas 35.3% of the seeds were dispersed; 27.0% of dispersed seeds produced seedlings and 62.9% of saplings survived for 2 years. Seedling survival was therefore the critical link in regeneration. Water stress was responsible for more than 70% of seedling losses, which suggests that abiotic factors (mainly rainfall) may account for most of thē uctuation in recruitment in this species. 4 Neither post-dispersal seed predation nor germination caused changes in the initial spatial distribution of seeds, but dierences in the requirements of seeds and seedlings then caused spatial uncoupling. The most favourable places for seeds were the worst for seedlings, and consequently frugivore-generated dispersal patterns diered from the ®nal spatial pattern of recruitment. 5 Recruitment under conspeci®cs was nearly zero and dispersers are therefore crucial if recruitment is to occur. Their eect on the amount of recruitment was, however, overwhelmed by processes acting on the seedling stage. 6 For Olea europaea, the pattern generated by short-term recruitment dynamics persists in the long-term spatial distribution of saplings.
Summary 1.The balance between facilitation and competition through time is at the core of models for successional dynamics. However, since the 1980s, the studies of facilitation have shifted away from successional processes. In a return to the traditional roots of the study of facilitation, we assessed the phylogenetic signatures of competition and facilitation in Mediterranean successional communities and compared them with those recently quantified in non-successional communities of the Mexican desert. 2. Based on previous work, we hypothesized that facilitation between distantly related lineages is an important driver of successional dynamics, as has been shown in non-successional systems. However, we also predicted that the balance between facilitation and competition will be different in successional systems because many species disappear from communities during the process of succession, which does not occur in non-successional systems. 3. We sampled plant species composition over a chronosequence of post-fire succession and predicted phylogenetic clustering in communities at the early stages caused by species that reproduce by seed ('seeders', belonging to a few specific families) being favoured by fire; overdispersion in intermediate stages driven by facilitation interactions among distantly related species; and randomness in the final stage caused by the competitive exclusion of pioneer species belonging to a few families and the survival of species in many other families. 4. In the pioneer stage, we found a random phylogenetic pattern because seeders and many resprouter species were present at this stage, indicating that autosuccession was also occurring. In intermediate phases, once pioneers had recruited into open spaces and facilitated late-successional species, most of which were ancient taxa originating during the Tertiary, phylogenetic overdispersion predominated. Finally, in the later stages competitive exclusion of pioneer species reduced phylogenetic diversity, leading to a random phylogenetic structure. 5. Synthesis. As previously found for non-successional communities, facilitation among distantly related lineages appeared to drive successional dynamics. However, subsequent competition reduced phylogenetic diversity during succession in this Mediterranean system, and some species disappeared from the community.
1. The response of frugivorous birds to an enlargement of fruit size, and the consequences for both birds and plants, are analysed for the interaction between avian seed dispersers and olives (Olea europaea). 2. The enlargement of fruit size promotes a shift in frugivorous birds’ feeding behaviour, from swallowing fruits whole to pecking pieces of pulp. The relative frequency of olive consumption using each feeding behaviour was assessed by combining field data on frequency of appearance of olive pulp and seeds with data from laboratory trials. 3. Sardinian Warblers (Sylvia melanocephala) and European Robins (Erithacus rubecula) were mainly peckers both on cultivated and wild olives. Blackcaps (Sylvia atricapilla) consumed wild olives mainly by swallowing but consumed cultivated olives (larger than the wild ones) primarily by pecking. Song Thrushes (Turdus philomelos) were primarily swallowers of both types of fruits. 4. Laboratory trials with Song Thrushes, Blackcaps and European Robins showed that: (a) all were able to peck fruits; (b) fruit size determined a shift from swallowing to pecking, as pecking frequency increased with the enlargement of the fruit size; (c) all the species had an increased fruit handling failure rate when trying to swallow increasingly large fruits; and (d) from the birds’ perspective, small shifts in fruit size may have important consequences on fruit profitability. 5. Pecking on olives turns the mutualistic fruit–frugivore interaction into a fruit‐pulp predator interaction, thus arising a conflict between the plant and frugivorous birds. 6. This study shows that heavy dependence on fruit is not always simply related to seed dispersal. The same frugivorous bird species can act as a seed disperser or a pulp predator for the same plant species. The threshold between these roles is highly influenced by the ratio gape size/fruit size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.