We studied lipid metabolism and the antioxidant defense system in plasma and liver of rats fed diets supplemented with L(omega)-nitro-L-arginine methyl ester (L-NAME), isosorbide dinitrate (DIS), L-arginine (Arg), or the associations of these drugs. Liver hydroperoxide and thiobarbituric-acid-reactive substance (TBARS) levels were decreased by Arg and increased by L-NAME or DIS treatments. Oxidized glutathione and conjugated dienes were increased by DIS. Nitrate + nitrite levels and serum calcium ([Ca(++)]) were incremented by Arg or DIS and reduced by L-NAME. Superoxide dismutase and catalase activities decreased under Arg treatment, while L-NAME or DIS caused stimulation. Liver high-density lipoprotein (HDL) cholesterol was increased by DIS or NAME (alone or associated with Arg). Free fatty acids and neutral and polar lipids were increased by Arg, L: -NAME, and DIS. However, predominating phospholipid synthesis increased the neutral/polar ratio. Decreased levels of nitric oxide (NO) (low [Ca(++)]) was directly associated with increased fatty acid synthetase, decreased phospholipase A(2), carnitine-palmitoyl transferase, and fatty acid desaturase activities. Raised NO (high [Ca(++)]) inversely correlated with increased phospholipase-A(2) and acyl-coenzyme A (CoA) synthetase and decreased fatty acid synthetase and beta-oxidation rate. Arg or DIS produced changes that were partially reverted by association with L-NAME. Based on these observations, prolonged therapeutical approaches using drugs that modify NO availability should be carefully considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.