The influence of four types of plasticizers, dioctyl phthalate (DOP), dioctyl adipate (DOA), triacetyl glycerol (TAG) and polyadipate (PA), in the thermal and mechanical properties of Poly(3‐hydroxybutyrate) (PHB), a highly crystalline biodegradable polyester, was evaluated in this work. The plasticizers were introduced alone or mixtures of them, using concentrations that varied from 5 to 30% wt. Their influence in some important polymer parameters as Tg, Tm and degree of crystallinity, and on its mechanical behavior, elongation and tensile strain were investigated. The best results were obtained for the sample with 30% TAG and that one using a binary mixture of plasticizers PA 20% and TAG 10%.
Poly(3‐hydroxybutyrate) (PHB) is a highly crystalline, biodegradable and biocompatible thermoplastic. However, its limited utilization as a commodity plastic is associated to both high cost and very poor mechanical properties. Blending PHB with a natural polymer, such as starch, is one way to improve its properties and to get low price raw materials, though they are not miscible since there are no strong interactions between the hydrophilic starch and the hydrophobic PHB. In this study binary blends of PHB were prepared with natural starch, starch‐adipate and grafted starch‐urethane derivatives. The PHB blends were characterized in terms of their mechanical and thermal properties. For all blends a decrease of the Young modulus was observed as compared to the pure PHB. However, blends containing natural starches and starch adipate resulted in brittle materials. A significant decrease of both glass transition temperature (Tg) and melting point (Tm) was observed for all formulations. The best results, lower modulus and Tg were obtained with grafted starch‐urethane blends using poly(propylene glycol).
Nanocomposites of poly (methyl methacrylate) (PMMA) and carbon nanotubes have a high potential for applications where conductivity and low specific weight are required. This piece of work concerns investigations of the level of dispersion and morphology on the electrical properties of in situ polymerized nanocomposites in different concentrations of multi-walled carbon nanotubes (MWCNT) in a PMMA matrix. The electrical conductivity was measured by the four point probe. The morphology and dispersion was analyzed by Transmission Electron Microscopy (TEM) and Small Angle X-ray Scattering (SAXS). The correlation between electrical conductivity and the MWCNT amount, presented a typical percolation behavior, whose electrical percolation threshold determined by power law relationship was 0.2 vol. (%) The exponent t from the percolation power law indicated the formation of a 3D network of randomly arranged MWCNT. SAXS detected that the structures are intermediate to disks or spheres indicating fractal geometry for the MWCNT aggregates instead of isolated rods. HR-TEM images allowed us to observe the MWCNT individually dispersed into the matrix, revealing their distribution without preferential space orientation and absence of significant damage to the walls. The combined results of SAXS and HR-TEM suggest that MWCNT into the polymeric matrix might present interconnected aggregates and some dispersed single structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.