Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments.
Light is one of the most important environmental factors for orientation of almost all organisms on Earth. Whereas light sensing is of crucial importance in plants to optimize light-dependent energy conservation, in nonphotosynthetic organisms, the synchronization of biological clocks to the length of a day is an important function. Filamentous fungi may use the light signal as an indicator for the exposure of hyphae to air and adapt their physiology to this situation or induce morphogenetic pathways. Although a yes/no decision appears to be sufficient for the light-sensing function in fungi, most species apply a number of different, wavelength-specific receptors. The core of all receptor types is a chromophore, a low-molecular-weight organic molecule, such as flavin, retinal, or linear tetrapyrrols for blue-, green-, or red-light sensing, respectively. Whereas the blue-light response in fungi is one of the best-studied light responses, all other light-sensing mechanisms are less well studied or largely unknown. The discovery of phytochrome in bacteria and fungi in recent years not only advanced the scientific field significantly, but also had great impact on our view of the evolution of phytochrome-like photoreceptors.
The obligatory biotrophic oomycetes Plasmopara viticola is the causal agent of downy mildew, a destructive disease of grapevine worldwide. So far, chemical fungicides are widely employed to limit this pathogen, but their adverse effects are stimulating the quest for environmentally friendly alternative approaches. Here we report on the search for mycoviruses that might be later developed as biocontrol agents for this pathogen. Symptomatic leaves were collected from various regions in Spain and Italy and mycelia associated to leaf lesions was harvested. Total RNA extractions were depleted of rRNA and metatranscriptomes were generated using a High-Throughput Sequencing approach. The virome associated to leaf lesions was then characterized through a bioinformatic pipeline relying on blast searches against current viral databases. Here we present an inventory of 283 new RNA viruses: 222 positive strand RNA viruses, 29 negative strand RNA viruses, 27 double stranded RNA viruses and 5 ORFan virus RdRP segments, which could not be reliably assigned to any existing group in the Riboviria. In addition to ORFan viruses, we found other surprising new evolutionary trajectories in this wide inventory of viruses. The most represented viruses in our collection are those in phylum Lenarviricota, and, among them, a group of mycovirus segments distantly related to narnaviruses, but characterized by a polymerase palm domain lacking subdomain C, with the putative GDD catalytic triad. We also provided evidence of a strict association between two RNA segments that form a new mycovirus clade of positive strand RNA in the phylum Kitrinoviricota, order Martellivirales. In the phylum Negarnaviricota, we report for the first time in the order Mononegavirales a clade of viruses that is ambisense, a feature that so far was present only in the order Bunyavirales. Furthermore, in the same phylum we detected the widespread occurrence and abundant accumulation in our libraries of a distinct mycovirus clade distantly related to the Muvirales and Goujanvirales orders, which so far include only viruses infecting invertebrates. Possible new oomycetes-specific virus clades are also described in the phylum Duplornaviricota. These data greatly expand the evolutionary history of mycoviruses adding new layers of diversity to the realm Riboviria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.