We present a complete mechanized proof of the result in homological algebra known as basic perturbation lemma. The proof has been carried out in the proof assistant Isabelle, more concretely, in the implementation of higher-order logic (HOL) available in the system. We report on the difficulties found when dealing with abstract algebra in HOL, and also on the ongoing stages of our project to give a certified version of some of the algorithms present in the Kenzo symbolic computation system.
In this paper, a set of programs enhancing the Kenzo system is presented. Kenzo is a Common Lisp program designed for computing in Algebraic Topology, in particular it allows the user to calculate homology and homotopy groups of complicated spaces. The new programs presented here entirely compute Serre and Eilenberg-Moore spectral sequences, in particular the E r p,q and d r p,q for arbitrary r. They also determine when E r p,q = E ∞ p,q and describe the filtration of the target homology groups H p+q by the E ∞ p,q 's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.