Tremor is defined as a rhythmic, involuntary oscillatory movement of a body part. Although everyone exhibits a certain degree of tremor, some pathologies lead to very disabling tremors. These pathological tremors constitute the most prevalent movement disorder, and they imply severe difficulties in performing activities of daily living. Although tremors are currently managed through pharmacotherapy or surgery, these treatments present significant associated drawbacks: drugs often induce side effects and show decreased effectiveness over years of use, while surgery is a hazardous procedure for a very low percentage of eligible patients. In this context, recent research demonstrated the feasibility of managing upper limb tremors through wearable technologies that suppress tremors by modifying limb biomechanics or applying counteracting forces. Furthermore, recent experiments with transcutaneous afferent stimulation showed significant tremor attenuation. In this regard, this article reviews the devices developed following these tremor management paradigms, such as robotic exoskeletons, soft robotic exoskeletons, and transcutaneous neurostimulators. These works are presented, and their effectiveness is discussed. The article also evaluates the different metrics used for the validation of these devices and the lack of a standard validation procedure that allows the comparison among them.
Essential tremor (ET) is a major cause of disability and is not effectively managed in half of the patients. We investigated whether mechanical vibration could reduce tremor in ET by selectively recruiting afferent pathways. We used piezoelectric actuators to deliver vibratory stimuli to the hand and forearm during long trials (4 min), while we monitored the tremor using inertial sensors. We analyzed the effect of four stimulation strategies, including different constant and variable vibration frequencies, in 18 ET patients. Although there was not a clear homogeneous response to vibration across patients and strategies, in most cases (50–72%) mechanical vibration was associated with an increase in the amplitude of their tremor. In contrast, the tremor was reduced in 5–22% of the patients, depending on the strategy. However, these results are hard to interpret given the intrinsic variability of the tremor: during equally long trials without vibration, the tremor changed significantly in 67% of the patients (increased in 45%; decreased in 22%). We conclude that mechanical vibration of the limb does not have a systematic effect on tremor in ET. Moreover, the observed intrinsic variability of the tremor should be taken into account when designing future experiments to assess tremor in ET and how it responds to any intervention.
Background Hemiparetic gait is characterized by strong asymmetries that can severely affect the quality of life of stroke survivors. This type of asymmetry is due to motor deficits in the paretic leg and the resulting compensations in the nonparetic limb. In this study, we aimed to evaluate the effect of actively promoting gait symmetry in hemiparetic patients by assessing the behavior of both paretic and nonparetic lower limbs. This paper introduces the design and validation of the REFLEX prototype, a unilateral active knee–ankle–foot orthosis designed and developed to naturally assist the paretic limbs of hemiparetic patients during gait. Methods REFLEX uses an adaptive frequency oscillator to estimate the continuous gait phase of the nonparetic limb. Based on this estimation, the device synchronically assists the paretic leg following two different control strategies: (1) replicating the movement of the nonparetic leg or (2) inducing a healthy gait pattern for the paretic leg. Technical validation of the system was implemented on three healthy subjects, while the effect of the generated assistance was assessed in three stroke patients. The effects of this assistance were evaluated in terms of interlimb symmetry with respect to spatiotemporal gait parameters such as step length or time, as well as the similarity between the joint’s motion in both legs. Results Preliminary results proved the feasibility of the REFLEX prototype to assist gait by reinforcing symmetry. They also pointed out that the assistance of the paretic leg resulted in a decrease in the compensatory strategies developed by the nonparetic limb to achieve a functional gait. Notably, better results were attained when the assistance was provided according to a standard healthy pattern, which initially might suppose a lower symmetry but enabled a healthier evolution of the motion of the nonparetic limb. Conclusions This work presents the preliminary validation of the REFLEX prototype, a unilateral knee exoskeleton for gait assistance in hemiparetic patients. The experimental results indicate that assisting the paretic leg of a hemiparetic patient based on the movement of their nonparetic leg is a valuable strategy for reducing the compensatory mechanisms developed by the nonparetic limb.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.