The present paper reports the design of a CMOS circuit capable of codifying the natural logarithm of an analog voltage in the relative phase of a train of pulses. The circuit is aimed to the implementation of a scale-independent pattern recognition system, based on the explanation provided by J. Hopfield for the human brain pattern-recognition computation in terms of stimuli representation through the phase of the action potentials. The circuit is designed targeting the AMS 0.35 μm process, occupying a core area of 0.0049 mm 2 and with a power consumption of less than 14 μW at a clock frequency of 3.3 MHz. The circuit codifies analog input voltages ranging form 1 to 5 V in phase differences between 2 and 2.7 μs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.