Autism spectrum disorder (ASD) is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA) during pregnancy. Resveratrol (RSV) is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+) neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg) from E6.5 to E18.5 and injected with VPA (600 mg/kg) in the E12.5. Male pups were analyzed in Nest Seeking (NS) behavior and in whisker nuisance task (WNT). At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA) of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.
Impairments in social behaviour are a defining feature of autism spectrum disorder (ASD).Individuals with ASD also usually present some difficulty to recognise or understand another person's feelings. Therefore, it is possible that altered empathy processing could hinder typical social interaction in ASD. Recently, robust paradigms confirmed that rodents show primordial forms of empathy-like behaviour. Therefore, in this work, we used one of these new protocols to test pro-social behaviour in the rat model of autism induced by Valproic Acid (VPA). We also evaluated possible beneficial effects of Resveratrol, since it can prevent social deficits in the VPA model. Rats were tested on their ability to open a restrainer to release a trapped conspecific. Exposure to VPA precludes the timely manifestation of this empathy-like behaviour, but does not affect its continuation after its first expression. We also found a significant correlation between average speed during the first day of test and becoming an Opener. Similarly, rats able to open the restrainer on the first day had an increased likelihood of repeating this behaviour in the later days of the testing programme. We did not find any protective effects of Resveratrol. Further investigation of empathy-like behaviour in the VPA model and in other models of autism could help to clarify the behavioural and neural processes underpinning the basic aspects of empathy alterations in autistic individuals.
Autism spectrum disorder (ASD) is characterized by deficits in communication and social interaction, restricted interests, and stereotyped behavior. Environmental factors, such as prenatal exposure to valproic acid (VPA), may contribute to the increased risk of ASD. Since disturbed functioning of the purinergic system has been associated with the onset of ASD and used as a potential therapeutic target for ASD in both clinical and preclinical studies, we analyzed the effects of suramin, a nonselective purinergic antagonist, on behavioral, molecular and immunological in an animal model of autism induced by prenatal exposure to VPA. Treatment with suramin (20 mg/Kg, intraperitoneal) restored sociability in the three-chamber apparatus and decreased anxiety measured by elevated plus maze apparatus, but had no impact on decreased reciprocal social interactions or higher nociceptive threshold in VPA rats. Suramin treatment had no impact on VPA-induced upregulation of P2X4 and P2Y2 in hippocampus, and P2X4 in medial prefrontal cortex, but normalized an increased level of interleukin 6 (IL-6). Our results suggest an important role of purinergic modulation in behavioral, molecular, and immunological aberrations described in VPA model, and suggest that purinergic system might be a potential target for pharmacotherapy in preclinical studies of ASD.
Neurodevelopmental disorders (NDDs) are a heterogeneous and highly prevalent group of psychiatric conditions marked by impairments in the nervous system. Their onset occurs during gestation, and the alterations are observed throughout the postnatal life. Although many genetic and environmental risk factors have been described in this context, the interactions between them challenge the understanding of the pathways associated with NDDs. Transcription factors (TFs)—a group of over 1,600 proteins that can interact with DNA, regulating gene expression through modulation of RNA synthesis—represent a point of convergence for different risk factors. In addition, TFs organize critical processes like angiogenesis, blood‐brain barrier formation, myelination, neuronal migration, immune activation, and many others in a time and location‐dependent way. In this review, we summarize important TF alterations in NDD and associated disorders, along with specific impairments observed in animal models, and, finally, establish hypotheses to explain how these proteins may be critical mediators in the context of genome‐environment interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.