In this paper, we present a method that allows to further improve speech enhancement obtained with recently introduced Deep Neural Network (DNN) models. We propose a multichannel refinement method of time-frequency masks obtained with single-channel DNNs, which consists of an iterative Complex Gaussian Mixture Model (CGMM) based algorithm, followed by optimum spatial filtration. We validate our approach on time-frequency masks estimated with three recent deep learning models, namely DCUnet, DCCRN, and FullSubNet. We show that our method with the proposed mask refinement procedure allows to improve the accuracy of estimated masks, in terms of the Area Under the ROC Curve (AUC) measure, and as a consequence the overall speech quality of the enhanced speech signal, as measured by PESQ improvement, and that the improvement is consistent across all three DNN models.
The aim of speech enhancement is to improve speech signal quality and intelligibility from a noisy microphone signal. In many applications, it is crucial to enable processing with small computational complexity and minimal requirements regarding access to future signal samples (look-ahead). This paper presents signal-based causal DCCRN that improves online single-channel speech enhancement by reducing the required look-ahead and the number of network parameters. The proposed modifications include complex filtering of the signal, application of overlapped-frame prediction, causal convolutions and deconvolutions, and modification of the loss function. Results of performed experiments indicate that the proposed model with overlapped signal prediction and additional adjustments, achieves similar or better performance than the original DC-CRN in terms of various speech enhancement metrics, while it reduces the latency and network parameter number by around 30%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.