Mineral dust over West Africa region modulates summer monsoon through direct radiative forcing. This study examined the impact of mineral dust radiative forcing on West Africa Monsoon variability with the aid of Regional Climate Model (RegCM4) at 50 km grid resolution driven by ERA Interim re-analysis. Three experiments were performed; first with the non-dust aerosol version of the model (CONTROL), and second with the dust aerosol module (DUST) and with an increase in the dust concentration (DOUBLE DUST). The simulation was run from October, 2004 to December, 2005 over West Africa domain with the first 3 months taken as spin up for model stability. The result shows that there was no significant change with Control and Dust case experiment but as the dust AOD increases from 1.0 to 2.0, radiation flux at the Top of Atmosphere changes from − 60 to − 80 W/m 2 in the Double dust experiment. The Surface Long-wave Radiation Flux of 8.0 W/m 2 remains unchanged in both cases. The Outgoing Long-wave Radiation (OLR) flux changes from 2.0 to 4.0 W/m 2 indicating reduction in convective formation and as well as decrease in precipitation of 2 mm/day in the Sahel, while precipitation increases from 2 to 4 mm/day in the Guinea coast region. There was also strengthening of TEJ core and weakening of AEJ above average as dust concentration increases in some parts of the region during the monsoon period. The air temperature increases from 22.5 to 38.5 °C in both cases from coastal area to Sahelian region of West Africa. It was concluded that substantial amount of dust concentration in the atmosphere could trigger and increase radiative forcing of aerosols thereby sensitive to monsoon variability and results in enhancement of precipitation amount in the Guinea coast and reduction of precipitation amount in the Sahel region of West Africa. Meanwhile, there is need to inquire more into difference aerosol concentration per specie that can trigger or increase radiative forcing in the atmosphere.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.