The purpose of this study was to assess the concurrent validity and test–retest reliability of a sensor-based gait analysis system. Eleven healthy subjects and four Parkinson’s disease (PD) patients were asked to complete gait tasks whilst wearing two inertial measurement units at their feet. The extracted spatio-temporal parameters of 1166 strides were compared to those extracted from a reference camera-based motion capture system concerning concurrent validity. Test–retest reliability was assessed for five healthy subjects at three different days in a two week period. The two systems were highly correlated for all gait parameters (r>0.93). The bias for stride time was 0±16 ms and for stride length was 1.4±6.7 cm. No systematic range dependent errors were observed and no significant changes existed between healthy subjects and PD patients. Test-retest reliability was excellent for all parameters (intraclass correlation (ICC) > 0.81) except for gait velocity (ICC > 0.55). The sensor-based system was able to accurately capture spatio-temporal gait parameters as compared to the reference camera-based system for normal and impaired gait. The system’s high retest reliability renders the use in recurrent clinical measurements and in long-term applications feasible.
Measurement of stride-related, biomechanical parameters is the common rationale for objective gait impairment scoring. State-of-the-art double-integration approaches to extract these parameters from inertial sensor data are, however, limited in their clinical applicability due to the underlying assumptions. To overcome this, we present a method to translate the abstract information provided by wearable sensors to context-related expert features based on deep convolutional neural networks. Regarding mobile gait analysis, this enables integration-free and data-driven extraction of a set of eight spatio-temporal stride parameters. To this end, two modeling approaches are compared: a combined network estimating all parameters of interest and an ensemble approach that spawns less complex networks for each parameter individually. The ensemble approach is outperforming the combined modeling in the current application. On a clinically relevant and publicly available benchmark dataset, we estimate stride length, width and medio-lateral change in foot angle up to -0.15 ± 6.09 cm, -0.09 ± 4.22 cm and 0.13 ± 3.78° respectively. Stride, swing and stance time as well as heel and toe contact times are estimated up to ±0.07, ±0.05, ±0.07, ±0.07 and ±0.12 s respectively. This is comparable to and in parts outperforming or defining state of the art. Our results further indicate that the proposed change in the methodology could substitute assumption-driven double-integration methods and enable mobile assessment of spatio-temporal stride parameters in clinically critical situations as, e.g., in the case of spastic gait impairments.
Abstract-Objective: Accurate estimation of spatial gait characteristics is critical to assess motor impairments resulting from neurological or musculoskeletal disease. Currently, however, methodological constraints limit clinical applicability of stateof-the-art double integration approaches to gait patterns with a clear zero-velocity phase. Methods: We describe a novel approach to stride length estimation that uses deep convolutional neural networks to map stride-specific inertial sensor data to the resulting stride length. The model is trained on a publicly available and clinically relevant benchmark dataset consisting of 1220 strides from 101 geriatric patients. Evaluation is done in a 10-fold cross validation and for three different stride definitions.Results: Even though best results are achieved with strides defined from mid-stance to mid-stance with average accuracy and precision of 0.01±5.37 cm, performance does not strongly depend on stride definition. The achieved precision outperforms stateof-the-art methods evaluated on the same benchmark dataset by 3.0 cm (36%). Conclusion: Due to the independence of stride definition, the proposed method is not subject to the methodological constrains that limit applicability of state-of-the-art double integration methods. Furthermore, it was possible to improve precision on the benchmark dataset. Significance: With more precise mobile stride length estimation, new insights to the progression of neurological disease or early indications might be gained. Due to the independence of stride definition, previously uncharted diseases in terms of mobile gait analysis can now be investigated by re-training and applying the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.