Inheritance of the apoE4 allele (4) increases the risk of developing Alzheimer's disease; however, the mechanisms underlying this association remain elusive. Recent data suggest that inheritance of 4 may lead to reduced apoE protein levels in the CNS. We therefore examined apoE protein levels in the brains, CSF and plasma of 2/2, 3/3, and 4/4 targeted replacement mice. These apoE mice showed a genotype-dependent decrease in apoE levels; 2/2 Ͼ3/3 Ͼ4/4. Next, we sought to examine the relative contributions of apoE4 and apoE3 in the 3/4 mouse brains. ApoE4 represented 30 -40% of the total apoE. Moreover, the absolute amount of apoE3 per allele was similar between 3/3 and 3/4 mice, implying that the reduced levels of total apoE in 3/4 mice can be explained by the reduction in apoE4 levels. In culture medium from 3/4 human astrocytoma or 3/3, 4/4 and 3/4 primary astrocytes, apoE4 levels were consistently lower than apoE3. Secreted cholesterol levels were also lower from 4/4 astrocytes. Pulse-chase experiments showed an enhanced degradation and reduced half-life of newly synthesized apoE4 compared with apoE3. Together, these data suggest that astrocytes preferentially degrade apoE4, leading to reduced apoE4 secretion and ultimately to reduced brain apoE levels. Moreover, the genotype-dependent decrease in CNS apoE levels, mirror the relative risk of developing AD, and suggest that low levels of total apoE exhibited by 4 carriers may directly contribute to the disease progression, perhaps by reducing the capacity of apoE to promote synaptic repair and/or A clearance.
Bullous Pemphigoid Antigen 1 (BPAG1) is a member of the plakin family of proteins. The plakins are multi-domain proteins that have been shown to interact with microtubules, actin filaments and intermediate filaments, as well as proteins found in cellular junctions. These interactions are mediated through different domains on the plakins. The interactions between plakins and components of specialized cell junctions such as desmosomes and hemidesmosomes are mediated through the socalled plakin domain, which is a common feature of the plakins. In this study, we report the crystal structure of a stable fragment from BPAG1, residues 226-448, defined by limited proteolysis of the whole plakin domain. The structure, determined by single-wavelength anomalous diffraction (SAD) phasing from a selenomethionine-substituted crystal at 3.0 Å resolution, reveals a tandem pair of triple helical bundles closely related to spectrin repeats. Based on this structure and analysis of sequence conservation, we propose that the architecture of plakin domains is defined by two pairs of spectrin repeats interrupted by a putative Src-Homology 3 (SH3) domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.