Freeform optical surfaces embedded in three-dimensional space, without any symmetry, are tailored so as to solve the archetypal problem of illumination design: redistribute the radiation of a given small light source onto a given reference surface, thus achieving a desired irradiance distribution on that surface. The shape of the optical surface is found by solving a set of partial nonlinear differential equations. For most cases, a few topologically distinct solutions exist, given suitable boundary conditions.
‘External quantum efficiency’, that is, the number of photons generated per electron passing through the p-n junction of an LED is probably the most important number to quantify the performance of an LED chip. Although advances in epitaxy have increased the fraction of radiative recombination to extremely high values, the extraction of the precious photons that are trapped in a high refractive index crystal is still tricky. In this brief tutorial, we look at the physics of light extraction both from a geometrical optics/thermodynamic and a wave optics point of view, discussing both random and deterministic surface structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.