Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning.In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
This paper considers the efficient operation of shared mobility systems via the combination of intelligent routing decisions for staff-based vehicle redistribution and real-time price incentives for customers. The approach is applied to London's Barclays Cycle Hire scheme, which the authors have simulated based on historical data. Using model-based predictive control principles, dynamically varying rewards are computed and offered to customers carrying out journeys, based on the current and predicted state of the system. The aim is to encourage them to park bicycles at nearby underused stations, thereby reducing the expected cost of redistributing them using dedicated staff. In parallel, routing directions for redistribution staff are periodically recomputed using a model-based heuristic. It is shown that it is possible to trade off reward payouts to customers against the cost of hiring staff to redistribute bicycles, in order to minimize operating costs for a given desired service level.Index Terms-Bicycle sharing, dynamic pricing, dynamic vehicle routing, model predictive control (MPC), shared mobility systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.