The classical linear model is commonly used to model the relationship between a response variable and a set of explanatory variables. The normality assumption is usually required so as to ease the hypothesis testing for the various linear regression models but it can be misleading for a proportional response variable that is bounded. This makes the ordinary least squares regression inappropriate for a regression model with a bounded dependent variable. This research proposes the fractional beta regression model as an alternative to help examine the determinants of post-harvest loss management of maize produce for farmers in Kenya. The response variable (Post-Harvest Loss Coefficient (PHLC)) is assumed to have a mixed continuous-discrete distribution with probability mass between zero and one. The fractional beta distribution is used to describe the continuous component of the model, since its density has a wide range of different shapes depending on the values of the two parameters that index the distribution. The study uses a suitable parameterization of the beta law in terms of its mean and a precision parameter, the parameters of the mixture distribution shall be modeled as functions of regression parameters. The considered parameters are Agriculture, Storage, Education, Fumigation and Transport. Inference on parameters, model diagnostics and model selection tools for the fractional beta regression is also be provided. Data used for this research was purely primary data which was collected from Uasin Gishu County, Kenya maize farmers through administration of a research questionnaire.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.