Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. Terms of use: Documents in AbstractThe investment decision on the placement of wind turbines is, neglecting legal formalities, mainly driven by the aim to maximize the expected annual energy production of single turbines. The result is a concentration of wind farms at locations with high average wind speed. While this strategy may be optimal for single investors maximizing their own return on investment, the resulting overall allocation of wind turbines may be unfavorable for energy suppliers and the economy because of large fluctuations in the overall wind power output. This paper investigates to what extent optimal allocation of wind farms in Germany can reduce these fluctuations. We analyze stochastic dependencies of wind speed for a large data set of German on-and offshore weather stations and find that these dependencies turn out to be highly nonlinear but constant over time. Using copula theory we determine the value at risk of energy production for given allocation sets of wind farms and derive optimal allocation plans. We find that the optimized allocation of wind farms may substantially stabilize the overall wind energy supply on daily as well as hourly frequency.
Measures of association are suggested between two random vectors. The measures are copula-based and therefore invariant with respect to the univariate marginal distributions. The measures are able to capture positive as well as negative association. In case the random vectors are just random variables, the measures reduce to Kendall's tau or Spearman's rho. Nonparametric estimators, based on ranks, for the measures are derived. Their large-sample asymptotics are derived and their small-sample behaviour is investigated by simulation. The measures are applied to characterize strength and direction of association of northern and southern European bond markets during the recent Euro crisis as well as association of stock markets with bond markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.