Background Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson’s disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. Methods Participants (older adults, people with Parkinson’s disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. Results The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$=$$ = 100%, F1 score $$=$$ = 100%), slalom walking (IC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%; FC: recall $$=$$ = 100%, precision $$\ge$$ ≥ 99%, F1 score $$=$$ = 100%), and turning (IC: recall $$\ge$$ ≥ 85%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 91%; FC: recall $$\ge$$ ≥ 84%, precision $$\ge$$ ≥ 95%, F1 score $$\ge$$ ≥ 89%). Conclusions Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.
Background: Motor and cognitive deficits and consequently mobility problems are common in geriatric patients. The currently available methods for diagnosis and for the evaluation of treatment in this vulnerable cohort are limited. The aims of the ComOn (COgnitive and Motor interactions in the Older populatioN) study are (i) to define quantitative markers with clinical relevance for motor and cognitive deficits, (ii) to investigate the interaction between both motor and cognitive deficits and (iii) to assess health status as well as treatment outcome of 1000 geriatric inpatients in hospitals of Kiel (Germany), Brescia (Italy), Porto (Portugal), Curitiba (Brazil) and Bochum (Germany).
Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson’s disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from −0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson’s disease.
For motor imagery (MI) to be effective, an internal representation of the to-be-imagined movement may be required. A representation can be achieved through prior motor execution (ME), but the neural correlates of MI that are primed by ME practice are currently unknown. In this study, young healthy adults performed MI practice of a unimanual visuomotor task (Group MI, n = 19) or ME practice combined with subsequent MI practice (Group ME&MI, n = 18) while electroencephalography (EEG) was recorded. Data analysis focused on the MI-induced event-related desynchronization (ERD). Specifically, changes in the ERD and movement times (MT) between a short familiarization block of ME (Block pre-ME), conducted before the MI or the ME combined with MI practice phase, and a short block of ME conducted after the practice phase (Block post-ME) were analyzed. Neither priming effects of ME practice on MI-induced ERD were found nor performanceenhancing effects of MI practice in general. We found enhancements of the ERD and MT in Block post-ME compared to Block pre-ME, but only for Group ME&MI. A comparison of ME performance measures before and after the MI phase indicated however that these changes could not be attributed to the combination of ME and MI practice. The mixed results of this study may be a consequence of the considerable intra-and inter-individual differences in the ERD, introduced by specifics of the experimental setup, in particular the individual and variable task duration, and suggest that task and experimental setup can affect the interplay of ME and MI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.