HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
The type VI secretion system (T6SS) is a nanomachine used by many bacteria to drive a toxin-laden needle into other bacterial cells. Although the potential to influence bacterial competition is clear, the fitness impacts of wielding a T6SS are not well understood. Here we present a new agent-based model that enables detailed study of the evolutionary costs and benefits of T6SS weaponry during competition with other bacteria. Our model identifies a key problem with the T6SS. Because of its short range, T6SS activity becomes self-limiting, as dead cells accumulate in its way, forming "corpse barriers" that block further attacks. However, further exploration with the model presented a solution to this problem: if injected toxins can quickly lyse target cells in addition to killing them, the T6SS becomes a much more effective weapon. We tested this prediction with single-cell analysis of combat between T6SS-wielding Acinetobacter baylyi and T6SS-sensitive Escherichia coli. As predicted, delivery of lytic toxins is highly effective, whereas nonlytic toxins leave large patches of E. coli alive. We then analyzed hundreds of bacterial species using published genomic data, which suggest that the great majority of T6SS-wielding species do indeed use lytic toxins, indicative of a general principle underlying weapon evolution. Our work suggests that, in the T6SS, bacteria have evolved a disintegration weapon whose effectiveness often rests upon the ability to break up competitors. Understanding the evolutionary function of bacterial weapons can help in the design of probiotics that can both establish well and eliminate problem species.
The bacterial Type VI secretion system (T6SS) delivers proteins into target cells using fast contraction of a long sheath anchored to the cell envelope and wrapped around an inner Hcp tube associated with the secreted proteins. Mechanisms of sheath assembly and length regulation are unclear. Here we study these processes using spheroplasts formed from ampicillin-treated Vibrio cholerae. We show that spheroplasts secrete Hcp and deliver T6SS substrates into neighbouring cells. Imaging of sheath dynamics shows that the sheath length correlates with the diameter of spheroplasts and may reach up to several micrometres. Analysis of sheath assembly after partial photobleaching shows that subunits are exclusively added to the sheath at the end that is distal from the baseplate and cell envelope attachment. We suggest that this mode of assembly is likely common for all phage-like contractile nanomachines, because of the conservation of the structures and connectivity of sheath subunits.
SUMMARYMitochondrial fission is a highly regulated process which, when disrupted, can alter metabolism, proliferation and apoptosis1–3. The downstream effects have implications for many diseases, from neurodegeneration4–6 to cardiovascular disease7,8 and cancer9,10. Key components of the fission machinery have been identified: constriction sites are initiated by the endoplasmic reticulum (ER)11 and actin12 before dynamin-related protein 1 (Drp1)13 is recruited to the outer mitochondrial membrane via adaptor proteins14–17, where it drives constriction and scission of the membrane18. In the life cycle of mitochondria, fission is important for the biogenesis of new mitochondria as well as the clearance of dysfunctional mitochondria via mitophagy3,19. Global regulation of fission on the cellular level is insufficient to explain how fate decisions are made at the single organelle level, so it is unknown how those dual functions arise, blocking progress in developing therapies that target mitochondrial activity. However, systematically studying mitochondrial division to uncover fate determinants is challenging, since fission is unpredictable, and mitochondrial morphology is extremely heterogeneous. Furthermore, because their ultrastructure lies below the diffraction limit, the dynamic organization of mitochondria and their interaction partners are hard to study at the single organelle level. We used live-cell structured illumination microscopy (SIM) and instant SIM20 for fast multi-colour acquisition of mitochondrial dynamics in Cos-7 cells and mouse cardiomyocytes. We analysed hundreds of fission events, and discovered two functionally and mechanistically distinct types of fission. Mitochondria divide peripherally to shed damaged material into smaller daughter mitochondria that subsequently undergo mitophagy, whereas healthy mitochondria proliferate via midzone division. Both types are Drp1-mediated, but they rely on different membrane adaptors to recruit Drp1, and ER and actin mediated pre-constriction is only involved in midzone fission.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.