Most recognition is based on identifying features, but specialization for face recognition in primates relies on a different mechanism, termed ‘holistic processing’ where facial features are bound together into a gestalt which is more than the sum of its parts. Here, we test whether individual face recognition in paper wasps also involved holistic processing using a modification of the classic part-whole test in two related paper wasp species: Polistes fuscatus , which use facial patterns to individually identify conspecifics, and Polistes dominula , which lacks individual recognition. We show that P. fuscatus use holistic processing to discriminate between P. fuscatus face images but not P. dominula face images. By contrast, P. dominula do not rely on holistic processing to discriminate between conspecific or heterospecific face images. Therefore, P. fuscatus wasps have evolved holistic face processing, but this ability is highly specific and shaped by species-specific and stimulus-specific selective pressures. Convergence towards holistic face processing in distant taxa (primates, wasps) as well as divergence among closely related taxa with different recognition behaviour ( P. dominula , P. fuscatus ) suggests that holistic processing may be a universal adaptive strategy to facilitate expertise in face recognition.
The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcR PVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR 2Acre mice to activate, silence and trace CalcR PVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labelled CalcR PVH neurons demonstrates that CalcR PVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcR PVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor (MC4R) signaling. These data show that CalcR PVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcR PVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.
The paraventricular nucleus of the hypothalamus (PVH) is a brain region crucial for energy homeostasis. Abnormal PVH development or damage leads to hyperphagic obesity and energy expenditure deficits underscoring the importance of PVH neuronal activity in energy balance control. Application of salmon calcitonin (sCT) to the PVH suppresses feeding and calcitonin receptor (CalcR) is highly expressed in the PVH of rodents suggesting that CalcR-expressing PVH neurons contribute to energy homeostasis. In situ hybridization reveals that many CalcRPVH neurons express melanocortin-4 receptor (MC4R), a receptor required for normal feeding behavior. To investigate the physiologic roles of CalcRPVH neurons, we generated CalcR-2a-Cre knock-in mice to manipulate CalcR-expressing cells. Deletion of MC4R from CalcR expressing cells using Cre-loxP technology resulted in profound obesity in both male and female mice by 16 weeks of age. This weight gain was attributable to hyperphagia, as cumulative food intake of the MC4R deleted mice was significantly greater than the controls and energy expenditure measurements acquired through CLAMS analysis were not significantly different. To determine the brain regions engaged by CalcRPVH neurons, we used anterograde Cre-dependent viral tracing reagents injected into the PVH of CalcR-Cre mice, and found that CalcRPVH neurons project to brain regions implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. To assess the acute effects of activating CalcRPVH neurons, we used DREADD technology to chemogenetically activate CalcRPVH neurons. CalcRPVH neuron activation suppressed feeding but had no significant effect on energy expenditure. To determine if the activity of CalcRPVH neurons is required for energy homeostasis, we silenced them using Cre-dependent tetanus toxin virus. Male mice with tetanus toxin silenced CalcRPVH neurons were obese 7 weeks following injection in part due to greater cumulative food intake; CLAMS analysis revealed no differences in energy expenditure. Mice with silenced CalcRPVH neurons as well as mice with CalcR deleted from the PVH had normal anorectic responses to sCT, suggesting sCT-induced anorexia does not require CalcRPVH neurons or CalcR expression in the PVH. Taken together, these findings suggest CalcRPVH neurons are an essential component of feeding and energy homeostatic circuitry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.