This work represents an experimental study and mathematical modeling of convective apple slice drying. The influence of multiple process parameters such as temperature, air humidity, air velocity and slice thickness on process kinetics, product water activity and parameters of empirical models has been investigated. Drying characteristics of apple slices were monitored at temperatures of 40, 45 and 50 °C, air velocities of 0.6, 0.85 and 1.1 m/s., slice thicknesses of 4, 6, 8, 10 and 12 mm, and in relative air humidity ranges of 25–28, 35–38 and 40–45%. During the process, samples were dried from an initial moisture content of 86.7% to that of 20% (w.b), corresponding to product water activity of 0.45 ± 0.05. By increasing the temperature from 40 to 50 °C, the time for reaching the required product water activity decreased by about 300 min. Sample thickness is the most significant parameter; by increasing the slice thickness from 4 to 12 mm, the time required to achieve the required water activity increased by more than 500 min. For all experimental runs, parameters of five different thin-layer empirical models were estimated. A thin-layer model sensible to process conditions such as temperature, air velocity, layer thickness and air relative humidity was developed and statistically analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.