Summary Rhizosheaths function in plant−soil interactions, and are proposed to form due to a mix of soil particle entanglement in root hairs and the action of adhesive root exudates. The soil‐binding factors released into rhizospheres to form rhizosheaths have not been characterised. Analysis of the high‐molecular‐weight (HMW) root exudates of both wheat and maize plants indicate the presence of complex, highly branched polysaccharide components with a wide range of galactosyl, glucosyl and mannosyl linkages that do not directly reflect cereal root cell wall polysaccharide structures. Periodate oxidation indicates that it is the carbohydrate components of the HMW exudates that have soil‐binding properties. The root exudates contain xyloglucan (LM25), heteroxylan (LM11/LM27) and arabinogalactan‐protein (LM2) epitopes, and sandwich‐ELISA evidence indicates that, in wheat particularly, these can be interlinked in multi‐polysaccharide complexes. Using wheat as a model, exudate‐binding monoclonal antibodies have enabled the tracking of polysaccharide release along root axes of young seedlings, and their presence at root hair surfaces and in rhizosheaths. The observations indicate that specific root exudate polysaccharides, distinct from cell wall polysaccharides, are adhesive factors secreted by root axes, and that they contribute to the formation and stabilisation of cereal rhizosheaths.
Background and aimsUnderstanding the structures and functions of carbon-based molecules in soils is an important goal in the context of soils as an ecosystem function of immense importance. Polysaccharides are implicated in maintaining soil aggregate status but have not been extensively dissected in terms of their structures and soil adhesion properties. This is largely because of the technical difficulties in identifying polysaccharide structures and quantifying any functional properties.MethodsHere, we describe the use of a novel nitrocellulose-based adhesion assay to determine the relative capacities for soil adhesion of over twenty plant and microbial polysaccharides that are likely to be present in soil and to contribute to organic matter content and properties. Weights of soil adhered to spots of known amounts of specific polysaccharides were quantified by scanning of the nitrocellulose sheets.ResultsThe most effective polysaccharides identified from this survey included chitosan, β-1,3-glucan, gum tragacanth, xanthan and xyloglucan. We also demonstrate that the soil adhesion assay is suitable to assess the soil-binding properties of plant exudates.ConclusionsThe soil adhesion assay will be useful for the functional dissection of the organic matter components of soils and also of the factors involved in soil attachment to plant roots and in rhizosheath formation.
Root exudates and rhizosheaths of attached soil are important features of growing roots. To elucidate factors involved in rhizosheath formation, wild type (WT) barley (Hordeum vulgare L. cv. Pallas) and a root hairless mutant, bald root barley (brb), were investigated with a combination of physiological, biochemical and immunochemical assays. When grown in soil, WT barley roots bound ∼5-fold more soil than brb per unit root length. High molecular weight (HMW) polysaccharide exudates of brb roots had less soil-binding capacity than those of WT root exudates. Carbohydrate and glycan monoclonal antibody analyses of HMW polysaccharide exudates indicated differing glycan profiles. Relative to WT plants, root exudates of brb had reduced signals for arabinogalactan-protein (AGP), extensin and heteroxylan epitopes. In contrast, the root exudate of 2-week old brb plants contained ∼25-fold more detectable xyloglucan epitope relative to WT. Root system immunoprints confirmed the higher levels of release of the xyloglucan epitope from brb root apices and root axes relative to WT. Epitope detection with anion-exchange chromatography indicated that the increased detection of xyloglucan in brb exudates was due to enhanced abundance of a neutral polymer. Conversely, brb root exudates contained decreased amounts of an acidic polymer, with soil-binding properties, containing the xyloglucan epitope and glycoprotein and heteroxylan epitopes relative to WT. We therefore propose that, in addition to physically structuring soil particles, root hairs facilitate rhizosheath formation by releasing a soil-binding polysaccharide complex.
To elucidate factors involved in rhizosheath formation, wild type (WT) barley (Hordeum vulgare L. cv. Pallas) and a root hairless mutant, bald root barley (brb), were investigated with a combination of physiological, biochemical and immunochemical assays. When grown in soil, WT barley roots bound ~5-fold more soil than brb per unit root length. High molecular weight (HMW) polysaccharide exudates of brb roots had less soil-binding capacity than those of WT root exudates. Carbohydrate and glycan monoclonal antibody analyses of HMW polysaccharide exudates indicated differing glycan profiles. Relative to WT plants, root exudates of brb had reduced signals for arabinogalactan-protein (AGP), extensin and heteroxylan epitopes than brb. In contrast, the brb root exudate contained ~25-fold more detectable xyloglucan epitope relative to WT. Epitope detection chromatography indicated that the increased detection of xyloglucan in brb exudates was due to enhanced abundance of a neutral polymer. Exudate preparations from brb had decreased amounts of an acidic form of xyloglucan associated with root-hair located glycoprotein and heteroxylan epitopes and with soil-binding properties. Therefore, in addition to physically structuring soil particles, root hairs facilitate rhizosheath formation by releasing a soil-binding polysaccharide complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.