We present a new model for the distribution of free electrons in the Galaxy, the Magellanic Clouds, and the intergalactic medium (IGM) that can be used to estimate distances to real or simulated pulsars and fast radio bursts (FRBs) based on their dispersion measure (DM). The Galactic model has an extended thick disk representing the so-called warm interstellar medium, a thin disk representing the Galactic molecular ring, spiral arms based on a recent fit to Galactic H II regions, a Galactic Center disk, and seven local features including the Gum Nebula, Galactic Loop I, and the Local Bubble. An offset of the Sun from the Galactic plane and a warp of the outer Galactic disk are included in the model. Parameters of the Galactic model are determined by fitting to 189 pulsars with independently determined distances and DMs. Simple models are used for the Magellanic Clouds and the IGM. Galactic model distances are within the uncertainty range for 86 of the 189 independently determined distances and within 20% of the nearest limit for a further 38 pulsars. We estimate that 95% of predicted Galactic pulsar distances will have a relative error of less than a factor of 0.9. The predictions of YMW16 are compared to those of the TC93 and NE2001 models showing that YMW16 performs significantly better on all measures. Timescales for pulse broadening due to interstellar scattering are estimated for (real or simulated) Galactic and Magellanic Cloud pulsars and FRBs.
The dispersive sweep of fast radio bursts (FRBs) has been used to probe the ionized baryon content of the intergalactic medium1, which is assumed to dominate the total extragalactic dispersion. Although the host-galaxy contributions to the dispersion measure appear to be small for most FRBs2, in at least one case there is evidence for an extreme magneto-ionic local environment3,4 and a compact persistent radio source5. Here we report the detection and localization of the repeating FRB 20190520B, which is co-located with a compact, persistent radio source and associated with a dwarf host galaxy of high specific-star-formation rate at a redshift of 0.241 ± 0.001. The estimated host-galaxy dispersion measure of approximately $${903}_{-111}^{+72}$$ 903 − 111 + 72 parsecs per cubic centimetre, which is nearly an order of magnitude higher than the average of FRB host galaxies2,6, far exceeds the dispersion-measure contribution of the intergalactic medium. Caution is thus warranted in inferring redshifts for FRBs without accurate host-galaxy identifications.
The polarization of fast radio bursts (FRBs), which are bright astronomical transient phenomena, contains information about their environments. Using wide-band observations with two telescopes, we report polarization measurements of five repeating FRBs and find a trend of lower polarization at lower frequencies. This behavior is modeled as multipath scattering, characterized by a single parameter, σ RM , the rotation measure (RM) scatter. Sources with higher σ RM have higher RM magnitude and scattering time scales. The two sources with the highest σ RM , FRB 20121102A and FRB 20190520B, are associated with compact persistent radio sources. These properties indicate a complex environment near the repeating FRBs, such as a supernova remnant or a pulsar wind nebula, consistent with their having arisen from young stellar populations.
We report three new FRBs discovered by the Five-hundred-meter Aperture Spherical radio Telescope (FAST), namely FRB 181017.J0036+11, FRB 181118, and FRB 181130, through the Commensal Radio Astronomy FAST Survey (CRAFTS). Together with FRB 181123, which was reported earlier, all four FAST-discovered FRBs share the same characteristics of low fluence (≤0.2 Jy ms) and high dispersion measure (DM, >1000 pc cm−3), consistent with the anticorrelation between DM and fluence of the entire FRB population. FRB 181118 and FRB 181130 exhibit band-limited features. FRB 181130 is prominently scattered (τ s ≃ 8 ms) at 1.25 GHz. FRB 181017.J0036+11 has full-bandwidth emission with a fluence of 0.042 Jy ms, which is one of the faintest FRB sources detected so far. CRAFTS has started to build a new sample of FRBs that fills the region for more distant and fainter FRBs in the fluence–DME diagram, previously out of reach of other surveys. The implied all-sky event rate of FRBs is 1.24 − 0.90 + 1.94 × 10 5 sky−1 day−1 at the 95% confidence interval above 0.0146 Jy ms. We also demonstrate here that the probability density function of CRAFTS FRB detections is sensitive to the assumed intrinsic FRB luminosity function and cosmological evolution, which may be further constrained with more discoveries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.