In this paper, we report on our investigation into the vibrational dynamics of the antisymmetric stretching modes of SCN(-) and N(3)(-) in several polar solvents. We used an infrared (IR) pump-probe method to study orientational relaxation processes. In two aprotic solvents (N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO)), the anisotropy decay shows a bimodal feature, whereas in other solvents the anisotropy decay can be fitted well by a single exponential function. We consider that the relative contribution of fast-decaying components is smaller in the other solvents than in DMF and DMSO. We discuss the possible origins of the different anisotropy decay behavior in different solvents. From the three-pulse IR photon echo measurements for SCN(-) and N(3)(-), we found that the time-correlation functions (TCFs) of vibrational frequency fluctuations decay on two different time scales, one of which is less than 100 fs and the other is approximately 3-6 ps. In aprotic solvents, the fast-decaying components of the TCFs on a <100 fs time scale play an important role in the vibrational frequency fluctuation, although the contribution of collective solvent reorganization in aprotic solvents was clearly observed to have small amplitudes. On the other hand, we found that the amplitude of components that decay in a few picoseconds and/or the constant offset of the TCF in protic solvents is relatively large compared with that in aprotic solvents. With the formation and dissociation of hydrogen bonds between ion solute and solvent molecules, the spectra of different solvated species are exchanged with each other and merged into one band. We considered that this exchange may be an origin of slow-decaying components of the TCFs and that the decay of the TCFs corresponds to the time scales of the exchange for protic solvents such as formamide. The mechanism of vibrational frequency fluctuations for the antisymmetric stretching modes of SCN(-) and N(3)(-) is discussed in terms of the difference between protic and aprotic solvents.
In liquid water, hydrogen bonds form three-dimensional network structures, which have been modeled in various molecular dynamics simulations. Locally, the hydrogen bonds continuously form and break, and the network structure continuously fluctuates. In aqueous solutions, the water molecules perturb the solute molecules, resulting in fluctuations of the electronic and vibrational states. These thermal fluctuations are fundamental to understanding the activation processes in chemical reactions and the function of biopolymers. In this Account, we review studies of the vibrational frequency fluctuations of solute molecules in aqueous solutions using three-pulse infrared photon echo experiments. For comparison, we also briefly describe dynamic fluorescence Stokes shift experiments for investigating solvation dynamics in water. The Stokes shift technique gives a response function, which describes the energy relaxation in the nonequilibrium state and corresponds to the transition energy fluctuation of the electronic state at thermal equilibrium in linear response theorem. The dielectric response of water in the megahertz to terahertz frequency region is a key physical quantity for understanding both of these frequency fluctuations because of the influence of electrostatic interactions between the solute and solvent. We focus on the temperature dependence of the three experiments to discuss the molecular mechanisms of both the frequency fluctuations in aqueous solutions. We used a biexponential function with sub-picosecond and picosecond time constants to characterize the time-correlation functions of both the vibrational and electronic frequency fluctuations. We focus on the slower component, with time constants of 1-2 ps for both the frequency fluctuations at room temperature. However, the temperature dependence and isotope effect for the time constants differ for these two types of fluctuations. The dielectric interactions generally describe the solvation dynamics of polar solvents, and hydrodynamic theory can describe the slow component for the electronic states. Compared with the slow component of the solvation dynamics, however, the picosecond component for the vibrational frequency fluctuations is less sensitive to temperature. Therefore, the slow component of the vibrational frequency fluctuation is determined by different underlying dynamics, which are important for the solvation dynamics of the electronic state. The time constant for the picosecond component for the vibrational frequency fluctuation does not significantly depend on the solute. We propose that the vibrational frequency fluctuates because of the constant structural changes in the hydrogen-bonding network of water molecules around the solute.
Electroabsorption ͑EA͒ spectra of polar and nonpolar molecules of coumarin 153 ͑C153͒ and pyrene in solution and in a polymer film of polymethylmethacrylate ͑PMMA͒ have been measured in the UV-visible region at room temperature. The shape of the EA spectra of C153 in benzene, 1,4-dioxane, or monochlorobenzene remarkably depends on the angle between the polarization direction of the absorption light and the applied electric field, whereas the EA spectra of C153 doped in PMMA show only the Stark shift and the field-induced change in spectral shape is negligible. These results demonstrate that C153 is reoriented by application of electric fields in solution, but the molecules are immobilized in a PMMA film. Based on the EA spectra, electric dipole moments both in the ground state and in the excited state have been evaluated for C153 in different solvents. In the EA spectra of pyrene, only the Stark shift is observed both in solution and in PMMA, indicating that the field-induced molecular reorientation does not occur both in solution and in PMMA. The change in dipole moment of C153 as well as the change in molecular polarizability of pyrene following absorption is much larger in solution than that in PMMA.
We have studied the temperature dependence of the vibrational frequency fluctuation of the antisymmetric stretching mode of N(3) (-) in D(2)O by three-pulse infrared (IR) photon echo experiments. IR pump-probe measurements were also carried out to investigate the population relaxation and the orientational relaxation of the same band. It was found that the time-correlation function (TCF) of the frequency fluctuation of this mode is well described by a biexponential function with a quasistatic term. The faster decay component has a time constant of about 0.1 ps, and the slower component varies from 1.4 to 1.1 ps in the temperature range from 283 to 353 K. This result indicates that liquid dynamics related to the frequency fluctuation are not highly sensitive to temperature. We discuss the relationship between the temperature dependence of the vibrational frequency fluctuation and that of the molecular motion of the system to investigate the molecular origin of the frequency fluctuation of the solute. We compare the temperature dependence of the frequency fluctuation with that of other dynamics such as dielectric relaxation of water. In contrast to the Debye dielectric relaxation time of D(2)O, the two time constants of the TCF of the frequency fluctuation do not exhibit strong temperature dependence. We propose a simple theoretical model for the frequency fluctuation in solutions based on perturbation theory and the dipole-dipole interaction between the vibrational mode of the solute and the solvent molecules. This model suggests that the neighboring solvent molecules in the vicinity of the solute play an important role in the frequency fluctuation. We suggest that the picosecond component of the frequency fluctuation results from structural fluctuation of the hydrogen-bonding network in water.
Frequency fluctuation of the NO stretching mode of the sodium nitroprusside, [Fe(CN)5NO]2−, in H2O and D2O was studied by three-pulse infrared photon echo spectroscopy. It is found that the time-correlation function of the frequency fluctuation of this mode is characterized by time constants similar to those of the triply degenerate T1u mode of the CN stretching of [Fe(CN)6]4−, showing that the vibrational frequency fluctuation is not dominated by the time-dependent anisotropic solute–solvent interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.