Fruit pulp and seeds from the jujube plant possess nutritional and medicinal properties. The bioactive components have been shown to vary both with cultivar and with growing conditions. Most studies report the components of varieties from China. We measured free amino acid, individual phenolic, and total phenolic content, and antioxidative activities in three jujube fruit pulp extracts from Boeun-deachu, Mechu, and Sanzoin cultivars and two seed extracts (Mechu and Sanzoin) from plants grown in Korea. In g/100 g dry weight, total free amino acid content measured by ion-exchange chromatography ranged from 5.2 to 9.8 in the pulp and from 4.0 to 5.3 in the seed. Total phenolic content measured by Folin-Ciocalteu ranged from 1.1 to 2.4 in the pulp and from 3.6 to 4.6 in the seed. Flavonoids were measured by HPLC and ranged from 0.7 to 1.8 in the pulp and from 3.2 to 4.0 in the seed. Flavonoids were identified by HPLC elution position and UV/vis and mass spectra. Fruits contained the following flavonoids: procyanidin B2, epicatechin, quercetin-3-O-rutinoside (Q-3-R), quercetin-3-O-galactoside (Q-3-G), kaempferol-glucosyl-rhamnoside (K-G-R), and two unidentified compounds. Seeds contained the following flavonoids: saponarin, spinosin, vitexin, swertish, 6'''-hydroxybenzoylspinosin (6'''-HBS), 6'''-feruloylspinosin (6'''-FS), and one unidentified substance. Dimensions and weights of the fresh fruit samples affected phenolic content. The distribution of the individual flavonoids among the different samples varied widely. Data determined by the FRAP antioxidative assay were well correlated with total phenolic content. In a departure from other studies, data from the DPPH free radical assay were not correlated with FRAP or with any of the measured compositional parameters. Because individual jujube flavonoids are reported to exhibit different health-promoting effects, knowledge of the composition and concentration of bioactive compounds of jujube products can benefit consumers.
Jujube (Ziziphus jujube) was analyzed at eight stages of ripeness (S1-8) for protein, by HPLC and mass spectroscopy for free amino acids and flavonoids, and by colorimetry for total flavonoids and antioxidative activity. The ripe fruit had lower levels of protein, flavonoids, and antioxidative activity than that of the unripe fruit. Free amino acids levels peaked at S5, due mainly to an increase in free asparagine. Extracts were also tested against four cell lines using the MTT cell viability assay. All growth stages dose-dependently inhibited HeLa cervical cancer cells, whereas the inhibition of Hel299 normal lung and A549 lung cancer cells decreased as the fruit matured and was well correlated with the flavonoid content and antioxidative activity. Chang normal liver cells were inhibited by only the S5 extract. U937 lymphoma cells were unaffected by the extracts. These results show the effect of fruit maturity on nutritional and health-promoting components.
Partial acid hydrolysis of the tetrasaccharide (lycotetraose) side chain of the tomato glycoalkaloid α-tomatine resulted in the formation of four products with three, two, one, and zero carbohydrate side chains, which were separated by highperformance liquid chromatography (HPLC) and identified by thin-layer chromatography (TLC) and liquid chromatography ion-trap time-of-flight mass spectrometry (LCMS-IT-TOF). The inhibitory activities in terms of IC 50 values (concentration that inhibits 50% of the cells under the test conditions) of the parent compound and the hydrolysates, isolated by preparative HPLC, against normal human liver and lung cells and human breast, gastric, and prostate cancer cells indicate that (a) the removal of sugars significantly reduced the concentration-dependent cell-inhibiting effects of the test compounds, (b) PC3 prostate cancer cells were about 10 times more susceptible to inhibition by α-tomatine than the breast and gastric cancer cells or the normal cells, (c) the activity of α-tomatine against the prostate cancer cells was 200 times greater than that of the aglycone tomatidine, and (d) the activity increased as the number of sugars on the aglycone increased, but this was only statistically significant at p < 0.05 for the normal lung Hel299 cell line. The effect of the alkaloids on tumor necrosis factor α (TNF-α) was measured in RAW264.7 macrophage cells. There was a statistically significant negative correlation between the dosage of γand α-tomatine and the level of TNF-α. α-Tomatine was the most effective compound at reducing TNF-α. The dietary significance of the results and future research needs are discussed.
To determine dissemination and genotype of AmpC beta-lactamases and an extended-spectrum beta-lactamase among clinical isolates of Enterobacteriaceae, we performed antibiotic susceptibility testing, pI determination, induction test, plasmid profiles, transconjugation test, enterobacterial repetitive consensus (ERIC)-PCR, and DNA sequencing. Among the 51 clinical isolates collected from a university hospital in Korea, six isolates were resistant to cephamycins. All six isolates produced a plasmid-encoded AmpC-type beta-lactamase, CMY-10. Five strains also produced one or more other beta-lactamases: SHV-12, an extended-spectrum beta-lactamase (five isolates); TEM-1, a class A beta-lactamase (two isolates); and a chromosomal AmpC beta-lactamase (one isolate, a strain of Enterobacter aerogenes, which produced all four of the beta-lactamases that were identified). One of six isolates produced only CMY-10. ERIC-PCR analysis revealed that dissemination of CMY-10 and SHV-12 was due to a clonal outbreak of a resistant strain and to the interspecies spread of resistance to cephamycins and broad-spectrum beta-lactams in Korea. CMY-10 beta-lactamase genes that are responsible for the resistance to cephamycins (cefoxitin and cefotetan), amoxicillin, cephalothin, and amoxicillin-clavulanic acid were cloned and characterized from six clinical isolates. A sequence identical to the common regions in In6, In7, and a novel integron from pSAL-1 was found upstream from blaCMY-10 gene at nucleotides 1-71. A total of 15 nucleotides (I-15) or 18 nucleotides (I-18) between position 71 and 72 were inserted into the blaCMY-10 gene. The blaCMY-10 gene might be inserted into a sul1-type complex integron by I-15 or I-18.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.