Host cellular receptors play key roles in the determination of virus tropism and pathogenesis. However, little is known about SARS-CoV-2 host receptors with the exception of ACE2. Furthermore, ACE2 alone cannot explain the multi-organ tropism of SARS-CoV-2 nor the clinical differences between SARS-CoV-2 and SARS-CoV, suggesting the involvement of other receptor(s). Here, we performed genomic receptor profiling to screen 5054 human membrane proteins individually for interaction with the SARS-CoV-2 capsid spike (S) protein. Twelve proteins, including ACE2, ASGR1, and KREMEN1, were identified with diverse S-binding affinities and patterns. ASGR1 or KREMEN1 is sufficient for the entry of SARS-CoV-2 but not SARS-CoV in vitro and in vivo. SARS-CoV-2 utilizes distinct ACE2/ASGR1/KREMEN1 (ASK) receptor combinations to enter different cell types, and the expression of ASK together displays a markedly stronger correlation with virus susceptibility than that of any individual receptor at both the cell and tissue levels. The cocktail of ASK-related neutralizing antibodies provides the most substantial blockage of SARS-CoV-2 infection in human lung organoids when compared to individual antibodies. Our study revealed an interacting host receptome of SARS-CoV-2, and identified ASGR1 and KREMEN1 as alternative functional receptors that play essential roles in ACE2-independent virus entry, providing insight into SARS-CoV-2 tropism and pathogenesis, as well as a community resource and potential therapeutic strategies for further COVID-19 investigations.
The aim of this study was to investigate the role of apelin in the cell proliferation and autophagy of lung adenocarcinoma. The over-expression of APJ in lung adenocarcinoma was detected by immunohistochemistry, while plasma apelin level in lung cancer patients was measured by enzyme-linked immunosorbent assay. Our findings revealed that apelin-13 significantly increased the phosphorylation of ERK1/2, the expression of cyclin D1, microtubule-associated protein 1 light chain 3A/B (LC3A/B), and beclin1, and confirmed that apelin-13 promoted A549 cell proliferation and induced A549 cell autophagy via ERK1/2 signaling. Moreover, there are pores on the surface of human lung adenocarcinoma cell line A549 and apelin-13 causes cell surface smooth and glossy as observed under atomic force microscopy. These results suggested that ERK1/2 signaling pathway mediates apelin-13-induced lung adenocarcinoma cell proliferation and autophagy. Under our experimental condition, autophagy associated with 3-methyladenine was not involved in cell proliferation.
Background: The differential diagnoses of patients hospitalized for respiratory infections due to influenza virus vs other pathogens are challenging. Our study investigated whether hematological parameters such as neutrophil (N), lymphocyte (L), platelet (PLT), and neutrophil-to-lymphocyte ratio (NLR) contributed in diagnosing influenza virus infections and in discriminating other respiratory infections. Methods: We retrospectively analyzed the laboratory characteristics of 307 patients with respiratory infections caused by influenza/non-influenza virus and bacteria. The diagnostic abilities of hematological indexes were evaluated in the patients compared with 100 healthy people.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.