Objective. Prior reports document macrophage and lymphocyte infiltration with proinflammatory cytokine expression in pathologic intervertebral disc (IVD) tissues. Nevertheless, the role of the Th17 lymphocyte lineage in mediating disc disease remains uninvestigated. We undertook this study to evaluate the immunophenotype of pathologic IVD specimens, including interleukin-17 (IL-17) expression, from surgically obtained IVD tissue and from nondegenerated autopsy control tissue.Methods. Surgical IVD tissues were procured from patients with degenerative disc disease (n ؍ 25) or herniated IVDs (n ؍ 12); nondegenerated autopsy control tissue was also obtained (n ؍ 8) from the anulus fibrosus and nucleus pulposus regions. Immunohistochemistry was performed for cell surface antigens (CD68 for macrophages, CD4 for lymphocytes) and various cytokines, with differences in cellularity and target immunoreactivity scores analyzed between surgical tissue groups and between autopsy control tissue regions.Results. Immunoreactivity for IL-4, IL-6, IL-12, and interferon-␥ (IFN␥) was modest in surgical IVD tissue, although expression was higher in herniated IVD samples and virtually nonexistent in control samples. The Th17 lymphocyte product IL-17 was present in >70% of surgical tissue fields, and among control samples was detected rarely in anulus fibrosus regions and modestly in nucleus pulposus regions. Macrophages were prevalent in surgical tissues, particularly herniated IVD samples, and lymphocytes were expectedly scarce. Control tissue revealed lesser infiltration by macrophages and a near absence of lymphocytes.Conclusion. Greater IFN␥ positivity, macrophage presence, and cellularity in herniated IVDs suggests a pattern of Th1 lymphocyte activation in this pathology. Remarkable pathologic IVD tissue expression of IL-17 is a novel finding that contrasts markedly with low levels of IL-17 in autopsy control tissue. These findings suggest involvement of Th17 lymphocytes in the pathomechanism of disc degeneration.
Many plant mutants develop spontaneous lesions that resemble disease symptoms in the absence of pathogen attack. In several pathosystems, lesion mimic mutations have been shown to be involved in programmed cell death, which in some instances leads to enhanced disease resistance to multiple pathogens. We investigated the relationship between spontaneous cell death and disease resistance in rice with nine mutants with a range of lesion mimic phenotypes. All nine mutations are controlled by recessive genes and some of these mutants have stunted growth and other abnormal characteristics. The lesion mimics that appeared on the leaves of these mutants were caused by cell death as measured by trypan blue staining. Activation of six defense-related genes was observed in most of the mutants when the mimic lesions developed. Four mutants exhibited significant enhanced resistance to rice blast. One of the mutants, spl11, confers non-race-specific resistance not only to blast but also to bacterial blight. The level of resistance in the spl11 mutant to the two pathogens correlates with the defense-related gene expression and lesion development on the leaves. The results suggest that some lesion mimic mutations in rice may be involved in disease resistance, and cloning of these genes may provide a clue to developing broad-spectrum resistance to diverse pathogens.
Background and Purpose-Erythropoietin (EPO) has been well characterized and shown to improve functional outcomes after ischemic injury, but EPO may also have unexplored effects on neurovascular remodeling and neuronal replacement in the neonatal ischemic brain. The current study investigates the effects of exogenous administration of EPO on revascularization and neurogenesis, 2 major events thought to contribute to neuronal replacement, in the neonatal brain after hypoxia/ischemia (H/I). Methods-Seven-day-old rat pups were treated with recombinant human EPO or vehicle 20 minutes after H/I and again on postischemic days 2, 4, and 6. Rats were euthanized 7 or 28 days after H/I for evaluation of infarct volume, revascularization, neurogenesis, and neuronal replacement using bromodeoxyuridine incorporation, immunohistochemistry, and lectin labeling. Neurological function was assessed progressively for 28 days after H/I by gait testing, righting reflex and foot fault testing. Results-We demonstrate that exogenous EPO-enhanced revascularization in the ischemic hemisphere correlated with decreased infarct volume and improved neurological outcomes after H/I. In addition to vascular effects, EPO increased both neurogenesis in the subventricular zone and migration of neuronal progenitors into the ischemic cortex and striatum. A significant number of newly synthesized cells in the ischemic boundary expressed neuronal nuclei after EPO treatment, indicating that exogenous EPO led to neuronal replacement. Conclusions-Our data suggest that treatment with EPO contributes to neurovascular remodeling after H/I by promoting tissue protection, revascularization, and neurogenesis in neonatal H/I-injured brain, leading to improved neurobehavioral outcomes.
inhibitor (BBI) genes encode serine protease inhibitors that have repetitive cysteine-rich domains with reactive sites for the trypsin or chymotrypsin family. We have identified seven BBI genes from japonica rice (Oryza sativa subsp. japonica var Teqing). All of the genes identified were found in a single cluster on the southern end of the long arm of rice chromosome 1. Four of the seven BBI genes have two repetitive cysteine-rich domains, whereas one has a truncated domain with only one reactive site. We have also identified three novel BBI genes, each of which possesses three repetitive domains instead of two. In situ hybridization analyses indicated that the accumulation of rice BBI transcripts was differentially regulated in germinating embryos and also in the leaves, roots, and flower organs at later developmental stages. Different members of the rice BBI gene family displayed different expression patterns during rice seed germination, and wounding induced the expression of rice BBI transcripts. The three-domain BBIs had higher expression levels than the two-domain BBIs. It was also found that the mRNA of rice BBI genes was present in abundant amounts in scutellar epithelium and aleurone layer cells. RBBI3-1, one of the three-domain RBBI, exhibited in vitro trypsin-inhibiting activity but no chymotrypsin-inhibiting activity. Overexpression of RBBI2-3 in transgenic rice plants resulted in resistance to the fungal pathogen Pyricularia oryzae, indicating that proteinase inhibitors confer resistance against the fungal pathogen in vivo and that they might play a role in the defense system of the rice plant.Plants have developed defense systems to combat various pathogens throughout their life cycle, from the seed stage until senescence, and it is particularly important that the embryo be kept free from infection. There are several embryonic defense mechanisms, including the production of plant lectins and pathogen-related proteins in response to attacks by pathogens or insects (Swegle et al., 1992;Ye et al., 2001;Guiderdoni et al., 2002). A well-known defense component is Ser protease inhibitors. They are expressed in developing seeds and are thought to play an important role in inhibiting trypsin and chymotrypsin of external origin (Ryan, 1981). Two major Ser protease inhibitors have been studied extensively in plants: Kunitz inhibitors and Bowman-Birk inhibitors (BBIs; Ryan, 1990). BBIs are Cys-rich proteins of about 8 to 16 kD with disulfide bonds and are encoded by a family of related genes. The BBI gene family has been found in both the Fabaceae and the Poaceae. BBIs identified in Fabaceae, such as soybean (Glycine max) and lima bean (Phaseolus lunatus), are 8-kD proteins. They have one BBI domain with two reactive sites for trypsin and the related enzymes, such as chymotrypsin (Birk, 1987). These protease inhibitors are double-headed, with two reactive sites in a single inhibitor molecule. Interestingly, this type of inhibitor displays anticarcinogenic activity (Birk, 1993;Kennedy, 1993).The BBIs found in...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.