With the growing concern regarding emission of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs), the relationship between the VOC emission rates and the associated public health risks has been rarely discussed. The objective of this study was to examine and compare the VOC emission rates and cancer and non-cancer risks by inhalation intake, using a municipal WWTP in China as an example, with respect to the effects of treatment technologies, VOC species, and seasonal variation. Given the treatment technology considered, the emission rates of VOCs in this study were estimated by means of mass balance or calculated on the molecular level. From the viewpoints of both emission rates and cancer and non-cancer risks, sedimentation was the treatment technology with the highest health risks to the workers. Slightly lower VOC emission rates and health risks than those for sedimentation were observed in anaerobic treatment. Although the aeration significantly enhanced the VOC emission rates in the aerobic treatment process, the associated health risks were limited due to the low VOC concentrations in the gas phase, which were likely attributed to the strong mixing and dilution with fresh air by aeration. Amongst the VOCs investigated, benzene was the VOC with both a relatively high emission rate and health risk, while trichloroethylene possessed a high emission rate but the lowest health risk. Without strong interfacial aeration and turbulence between the water and atmosphere, the effects of treatment technology and seasonal variation on the health risks might be connected to the VOC emission rates, while the effect of VOC species depended considerably on the respective cancer slope factors and reference concentrations; the employment of aeration provided a different conclusion in which the emission rates were enhanced without a significant increase in the related cancer risks. These findings can provide insight into future health risk management and reduction strategies for workers in WWTPs.
The uncontrolled release of volatile organic compounds (VOCs) from wastewater treatment plants (WWTPs) and the adverse health effects on the public have been of increasing concern. In this study, a lab-scale bioreactor was prepared to analyze the mass distribution of three aromatic (benzene, toluene, and xylenes) and four chlorinated VOCs (chloroform, carbon tetrachloride, trichloroethylene, and tetrachloroethylene) among the air, water and sludge phases in wastewater treatment processes. The VOC distribution through a full-scale WWTP in northern China was further investigated with respect to the effects of seasonal temperature variations and treatment technologies, followed by the cancer risk assessment using a steady-state Gaussian plume model (Industrial Source Complex) to simulate the atmospheric behaviors of the VOCs emitted from the WWTP. It was found that three aromatic hydrocarbons, notably benzene, were more readily released from the wastewater into the atmosphere, whereas the chlorinated compounds except chloroform were mainly present in the water phase through the treatment processes. The primary clarifier was the technology releasing high levels of VOCs into the atmosphere from the wastewater. The extents of volatilization or biodegradation, two important mechanisms to remove VOCs from wastewater, appeared to be determined by the physicochemical characteristics of the compounds, as the influence of treatment technologies (e.g., aeration) and seasonal temperature variations was rather limited. More importantly, the people living in the areas even more than 4 km away from the WWTP were still potentially exposed to cancer risks exceeding the regulatory threshold limit. The findings described the complex nature of VOC emissions from WWTPs and quantitatively indicated that the associated health impacts on the public near the WWTPs could be severely underestimated, whereas their treatment efficiencies by wastewater treatment technologies were overestimated. Instead of fully controlling the VOC release from WWTPs, the identification and abatement of important VOC species with regard to the atmospheric emission and health concerns is one possible alternative approach to effectively minimize the environmental and public health impacts by VOCs released from this particular source.
In this study, a lab-scale bioreactor experiment was conducted to investigate the fates of three aromatic hydrocarbons (benzene, toluene, and xylenes) in wastewater treatment processes, with respect to the differences among the species, together with the effects of aeration and the presence of activated sludge. The concentrations of the volatile organic compounds (VOCs) in the phases of air, water, and activated sludge in the bioreactor were analyzed to determine the respective chemical activities and to predict the possible transferring potentials of the VOCs among the three phases. Given appreciable levels of the VOCs being absorbed from the wastewater treatment plants (WWTPs) and their volatility, the directions of the transfers for these VOCs were from activated sludge to water and from water to air, indicating the importance of volatilization for the fates of VOCs in this reactor. The presence of activated sludge in the bioreactor had a positive effect on the transfers of the VOCs from air to water and from water to sludge, particularly for those VOCs with large octanol-water partition coefficients (K OW ). The effect of aeration on the fates of the VOCs was affected by factors including the Henry's law coefficients and K OW values of the VOCs, and the presence of activated sludge in the system. For the VOCs with large Henry's law coefficients and small K OW values, aeration reduced the concentration of the VOCs in the air and water phases more significantly, resulting in positive and negative impacts on the volatilization and biosorption/biodegradation of the VOCs in WWTPs, respectively, which was unexpected based on the design of the WWTPs for VOC removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.