The proteins harboring RING finger motif(s) have been shown to mediate protein-protein interactions that are relevant to a variety of cellular processes. In an effort to elucidate the evolutionary dynamics of the rice RING finger protein family, we have attempted to determine their genomic locations, expression diversity, and co-expressed genes via in silico analysis and semi-quantitative RT-PCR. A total of 425 retrieved genes appear to be distributed over all 12 of the chromosomes of rice with different distributions, and are reflective of the evolutionary dynamics of the rice genome. A genome-wide dataset harboring 155 gene expression omnibus sample plates evidenced some degree of differential evolutionary fates between members of RING-H2 and RING-HC types. Additionally, responses to abiotic stresses, such as salinity and drought, demonstrated that some degree of expression diversity existed between members of the RING finger protein genes. Interestingly, we determined that one RING-H2 finger protein gene (Os04g51400) manifested striking differences in expression patterns in response to abiotic stresses between leaf and culm-node tissues, further revealing responses highly similar to the majority of randomly selected co-expressed genes. The gene network of genes co-expressed with Os04g51400 may suggest some role in the salt response of the gene. These findings may shed further light on the evolutionary dynamics and molecular functional diversity of these proteins in complex cellular regulations.
Flowering time is an important factor determining yield and seed quality in maize. A change in flowering time is a strategy used to survive abiotic stresses. Among abiotic stresses, drought can increase anthesis-silking intervals (ASI), resulting in negative effects on maize yield. We have analyzed the correlation between flowering time and drought stress using RNA-seq and bioinformatics tools. Our results identified a total of 619 genes and 126 transcripts whose expression was altered by drought stress in the maize B73 leaves under short-day condition. Among drought responsive genes, we also identified 20 genes involved in flowering times. Gene Ontology (GO) enrichment analysis was used to predict the functions of the drought-responsive genes and transcripts. GO categories related to flowering time included reproduction, flower development, pollen–pistil interaction, and post-embryonic development. Transcript levels of several genes that have previously been shown to affect flowering time, such as PRR37, transcription factor HY5, and CONSTANS, were significantly altered by drought conditions. Furthermore, we also identified several drought-responsive transcripts containing C2H2 zinc finger, CCCH, and NAC domains, which are frequently involved in transcriptional regulation and may thus have potential to alter gene expression programs to change maize flowering time. Overall, our results provide a genome-wide analysis of differentially expressed genes (DEGs), novel transcripts, and isoform variants expressed during the reproductive stage of maize plants subjected to drought stress and short-day condition. Further characterization of the drought-responsive transcripts identified in this study has the potential to advance our understanding of the mechanisms that regulate flowering time under drought stress.
SummaryRoots have both indeterminate and determinate developmental programs. The latter is preceded by the former. It is not well understood how the indeterminacy-to-determinacy switch (IDS) is regulated.We isolated a moots koom2 (mko2; 'short root' in Mayan) Arabidopsis thaliana mutant with determinate primary root growth and analyzed the root apical meristem (RAM) behavior using various marker lines. Deep sequencing and genetic and pharmacological complementation permitted the identification of a point mutation in the FOLYLPOLYGLUTAMATE SYNTHETASE1 (FPGS1) gene responsible for the mko2 phenotype.Wild-type FPGS1 is required to maintain the IDS in the 'off' state. When FPGS1 function is compromised, the IDS is turned on and the RAM becomes completely consumed. The polyglutamate-dependent pathway of the IDS involves activation of the quiescent center independently of auxin gradients and regulatory modules participating in RAM maintenance (WUSCHEL-RELATED HOMEOBOX5 (WOX5), PLETHORA, and SCARECROW (SCR)). The mko2 mutation causes drastic changes in folate metabolism and also affects lateral root primordium morphogenesis but not initiation.We identified a metabolism-dependent pathway involved in the IDS in roots. We suggest that the root IDS represents a specific developmental pathway that regulates RAM behaviour and is a different level of regulation in addition to RAM maintenance.
A large number of really interesting new gene (RING) E3 ligases contribute to the post-translational modification of target proteins during plant responses to environmental stresses. However, the physical interactome of RING E3 ligases in rice remains largely unknown. Here, we evaluated the expression patterns of 47 Oryza sativa RING finger protein (OsRFP) genes in response to abiotic stresses via semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and in silico analysis. Subsequently, molecular dissection of nine OsRFPs was performed by the examination of their E3 ubiquitin ligase activity, subcellular localization, and physical interaction with target proteins. Most of the OsRFPs examined possessed E3 ligase activity and showed diverse subcellular localization. Yeast two-hybrid analysis was then employed to construct a physical interaction map of seven OsRFPs with their 120 interacting proteins. The results indicated that these OsRFPs required dynamic translocation and partitioning for their cellular activation. Heterogeneous overexpression of each of the OsRFP genes in Arabidopsis suggested that they have functionally diverse responses to abiotic stresses, which may have been acquired during evolution. This comprehensive study provides insights into the biological functions of OsRFPs, which may be useful in understanding how rice plants adapt to unfavourable environmental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.