ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.
The Ba3MgSi2O8:Eu2+, Mn2+ shows three emission colors: 442, 505, and 620 nm. The 442 and 505 nm emission originate from Eu2+ ions, while the 620 nm emission originates from Mn2+ ions. The excitation bands of three emission colors are positioned around 375 nm. Electron paramagnetic resonance measurement demonstrates that Eu2+ ions are occupied with three different Ba2+ sites. The red emission of Mn2+ ions has a long decay time of 750 ms due to persistent energy transfer from oxygen vacancies to Mn2+ ions, while the blue and green bands of Eu2+ ions have decay times of 0.32 and 0.64 μs, respectively. The fabricated white-light emitting diode using a 400-nm-emissive chip with a white-light emitting Ba3MgSi2O8:Eu2+, Mn2+ phosphor shows warm white light and higher color stability against input power in comparison with a commercial GaN-pumped (Y1−xGdx)3(Al1−yGay)5O12:Ce3+ phosphor.
White-light-emitting diodes are fabricated by using 375nm emitting InGaN chip with Sr3MgSi2O8:Eu2+ (blue and yellow) or Sr3MgSi2O8:Eu2+, Mn2+ (blue, yellow, and red). At a color temperature of 5892K, the color coordinates are x=0.32, y=0.33, and the color rendering index is 84%; at a color temperature of 4494K, the color coordinates are x=0.35, y=0.33, and the color rendering index is 92%. The blue (470nm) and yellow (570nm) emission bands are originated from Eu2+ ions, while the red (680) emission band is originated from Mn2+ ions in Sr3MgSi2O8 host. The energy transfer among three bands occurs due to the spectral overlap between emission and absorption bands. It is confirmed by the faster decay time of the energy donor. Our white-light-emitting diodes show higher color reproducibility, higher color stability on forward-bias current, and excellent color rendering index in comparison with a commercial YAG:Ce3+-based white-light-emitting diode.
Supercritical carbon dioxide is efficiently converted to dimethyl carbonate (DMC) via the reaction with methanol in the presence of a catalytic amount of dialkyltin oxide or its derivatives. The removal of water is the key to accomplishing the high conversion by shifting the equilibrium to dimethyl carbonate. Dehydration is successfully carried out by circulating the reaction mixture through a dehydrating tube packed with molecular sieve 3A. Under the effective dehydration conditions, the DMC yield is almost linearly dependent on the reaction time, catalyst amount, methanol concentration, and CO 2 pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.