Vegetation restoration can affect the process of soil organic carbon (SOC) decomposition, but how this effect is related to soil moisture and temperature remains uncertain. Thus, we performed an incubation of 120 days using soils of degraded land, plantation forest, and secondary natural forest, at two levels of temperature under two moisture levels. We found that the amount of cumulative SOC decomposition in the plantation and secondary natural forest soil was ca. 11.7 times higher than that in the soil from degraded land. Higher soil moisture and temperature treatment increased SOC decomposition in the plantation and secondary natural forest soils. However, in the soil from degraded land, higher soil moisture did not increase SOC decomposition, and higher temperature only increased SOC decomposition in the 60%WHC treatment. The amount of cumulative SOC decomposition was positively correlated with soil MBC and DOC content. The responses of SOC decomposition and the decomposability of DOC to moisture and temperature along the vegetation restoration gradient were highly consistent. Furthermore, in the 60%WHC treatment group, the temperature sensitivity (Q10) of SOC decomposition declined with vegetation restoration age increase. Higher soil moisture did not affect Q10 in the plantation and secondary natural forest soil, but increased Q10 in the soil from degraded land. Our results indicate that higher soil temperature and moisture would stimulate SOC decomposition, but it is highly dependent on labile carbon supply and microbial metabolic activity along the vegetation restoration gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.