Si/SiC heterostructural impact avalanche transit time (IMPATT) diode indicates of important applications in Terahertz (THz) power source, integrated circuit etc. In this paper, the (n)Si/(p)4H-SiC, (n)Si/(p)6H-SiC, (n)Si/(p)3C-SiC heterostructural double drift region IMPATT diodes operating at the atmospheric window frequency of 0.85 THz are designed by the drift-diffusion model while their static state, large signal and noise properties are numerically simulated. The performance parameters of the studied devices such as breakdown voltage, peak electric field strength, optimal negative conductance, output power, power conversion efficiency, admittance-frequency relation, quality factor, noise electric field, mean-square noise voltage per band-width and noise measure were calculated and compared. This method can guide for optimizing the Si/SiC heterostructural IMPATT device in the future.
Hetero-structure of AlxGa1-xN/GaN exhibits important applications in high frequency and large power devices. In this paper, AlN/GaN is adopted to optimal design the large power impact avalanche transit time (IMPATT) and mixed tunneling avalanche transit time (MITATT) diodes operating at the atmospheric low loss window frequency of 0.85 THz. The static state and large signal characteristics of the devices are numerically simulated. The values of peak electric field strength, break-down voltage, avalanche voltage, the maximum generation rates of avalanche and tunneling, admittance-frequency relation, output power, conversion efficiency, quality factor of the proposed hetero-structural IMPATT and MITATT diodes are calculated, respectively. Via comparing the obtained results of (n)AlN/(p)GaN and (n)GaN/(p)AlN IMPATT diodes to those of the MITATT counterparts, there exists little performance difference between IMPATT and MITATT devices while implies significant difference between the (n)AlN/(p)GaN and (n)GaN/(p)AlN diodes.
Successes of GaN and SiC electronics in high frequency, large power realm indicate that, the GaN/SiC hetero-structures can be used to design the impact avalanche transit time (IMPATT) diodes operating at Terahertz range, of which holds advantages over homo-structural counterparts in lower noise and reduced tunnel current. Here, the (n)GaN/(p)SiC and (p)GaN/(n)SiC double drift region (DDR) IMPATT diodes operating at 0.85 THz are proposed based on the quantum corrected drift-diffusion (QCDD) model, the performance parameters of static state, large signal and noise properties of the studied devices such as peak electric field intensity, breakdown voltage, optimal negative conductance, output power, conversion efficiency, admittance-frequency relation, quality factor, noise electric field, mean-square noise voltage per band-width and noise measure were numerically calculated and analyzed, which can guide to optimize the GaN/SiC IMPATT diodes.
SiC heteropolytype structures indicate important applications in high frequency, large power solid devices etc. In this paper, the impact avalanche transit time (IMPATT) and mixed tunneling avalanche transit time (MITATT) diodes with heteropolytype consisting of two semiconductors among the 3C-SiC, 4H-SiC and 6H-SiC are numerically simulated to investigate the static state and small signal characteristics at the atmospheric window frequency of 1.56 THz. The breakdown voltage, avalanche voltage, peak value of static electric field, the maximum generation rates of avalanche and tunneling, power conversion efficiency, admittance-frequency relation of the proposed SiC heteropolytype diodes are calculated, respectively. Comparing the obtained parameters of IMPATT diodes with those of MITATT devices, the results imply that tunneling shows little influence on the small signal performance of the heteropolytype IMPATT diodes included 3C-SiC material, which is different from those of the homopolytype counterparts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.