KRAS was recently identified to be potentially druggable by allele-specific covalent targeting of Cys-12 in vicinity to an inducible allosteric switch II pocket (S-IIP). Success of this approach requires active cycling of KRAS between its active-GTP and inactive-GDP conformations as accessibility of the S-IIP is restricted only to the GDP-bound state. This strategy proved feasible for inhibiting mutant KRAS in vitro; however, it is uncertain whether this approach would translate to in vivo. Here, we describe structure-based design and identification of ARS-1620, a covalent compound with high potency and selectivity for KRAS. ARS-1620 achieves rapid and sustained in vivo target occupancy to induce tumor regression. We use ARS-1620 to dissect oncogenic KRAS dependency and demonstrate that monolayer culture formats significantly underestimate KRAS dependency in vivo. This study provides in vivo evidence that mutant KRAS can be selectively targeted and reveals ARS-1620 as representing a new generation of KRAS-specific inhibitors with promising therapeutic potential.
KRAS gain-of-function mutations occur in approximately 30% of all human cancers. Despite more than 30 years of KRAS-focused research and development efforts, no targeted therapy has been discovered for cancers with KRAS mutations. Here, we describe ARS-853, a selective, covalent inhibitor of KRAS G12C that inhibits mutant KRAS-driven signaling by binding to the GDP-bound oncoprotein and preventing activation. Based on the rates of engagement and inhibition observed for ARS-853, along with a mutant-specifi c mass spectrometry-based assay for assessing KRAS activation status, we show that the nucleotide state of KRAS G12C is in a state of dynamic fl ux that can be modulated by upstream signaling factors. These studies provide convincing evidence that the KRAS G12C mutation generates a "hyperexcitable" rather than a "statically active" state and that targeting the inactive, GDP-bound form is a promising approach for generating novel anti-RAS therapeutics.
SIGNIFICANCE:A cell-active, mutant-specifi c, covalent inhibitor of KRAS G12C is described that targets the GDP-bound, inactive state and prevents subsequent activation. Using this novel compound, we demonstrate that KRAS G12C oncoprotein rapidly cycles bound nucleotide and responds to upstream signaling inputs to maintain a highly active state. Cancer Discov; 6(3); 316-29.
More and more evidence indicates that circular RNAs (circRNAs) have important roles in several diseases, especially in cancers. However, their involvement remains to be investigated in breast cancer. Through screening circRNA profile, we identified 235 differentially expressed circRNAs in breast cancer. Subsequently, we explored the clinical significance of two circTADA2As in a large cohort of triple-negative breast cancer (TNBC), and performed functional analysis of circTADA2A-E6 in vitro and in vivo to support clinical findings. Finally, we evaluated the effect of circTADA2A-E6 on miR-203a-3p and its target gene SOCS3. We detected two circRNAs, circTADA2A-E6 and circTADA2A-E5/E6, which were among the top five differentially expressed circRNAs in breast cancer. They were consistently and significantly decreased in a large cohort of breast cancer patients, and their downregulation was associated with poor patient survival for TNBC. Especially, circTADA2A-E6 suppressed in vitro cell proliferation, migration, invasion, and clonogenicity and possessed tumor-suppressor capability. circTADA2A-E6 preferentially acted as a miR-203a-3p sponge to restore the expression of miRNA target gene SOCS3, resulting in a less aggressive oncogenic phenotype. circTADA2As as promising prognostic biomarkers in TNBC patients, and therapeutic targeting of circTADA2As/miRNA/mRNA network may be a potential strategy for the treatment of breast cancer.
Alogliptin is a potent, selective inhibitor of the serine protease dipeptidyl peptidase IV (DPP-4). Herein, we describe the structure-based design and optimization of alogliptin and related quinazolinone-based DPP-4 inhibitors. Following an oral dose, these noncovalent inhibitors provide sustained reduction of plasma DPP-4 activity and a lowering of blood glucose in animal models of diabetes. Alogliptin is currently undergoing phase III trials in patients with type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.