As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens. Emerging evidence has shown that macrophage autophagy plays an essential role in macrophage polarization, chronic inflammation, and organ fibrosis. Because of the high heterogeneity of macrophages in different organs, different macrophage types may play different roles in organ fibrosis. Here, we review the current understanding of the function of macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis in different organs, highlight the potential role of macrophage autophagy in the treatment of fibrosis. Finally, the important unresolved issues in this field are briefly discussed. A better understanding of the mechanisms that macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis may contribute to developing novel therapies for chronic inflammatory diseases and organ fibrosis.
The accumulation of protein aggregates is the hallmark of many neurodegenerative diseases. The dysregulation of protein homeostasis (or proteostasis) caused by acute proteotoxic stresses or chronic expression of mutant proteins can lead to protein aggregation. Protein aggregates can interfere with a variety of cellular biological processes and consume factors essential for maintaining proteostasis, leading to a further imbalance of proteostasis and further accumulation of protein aggregates, creating a vicious cycle that ultimately leads to aging and the progression of age-related neurodegenerative diseases. Over the long course of evolution, eukaryotic cells have evolved a variety of mechanisms to rescue or eliminate aggregated proteins. Here, we will briefly review the composition and causes of protein aggregation in mammalian cells, systematically summarize the role of protein aggregates in the organisms, and further highlight some of the clearance mechanisms of protein aggregates. Finally, we will discuss potential therapeutic strategies that target protein aggregates in the treatment of aging and age-related neurodegenerative diseases.
Heat shock proteins (HSPs) are highly conserved stress proteins known as molecular chaperones, which are considered to be cytoplasmic proteins with functions restricted to the intracellular compartment, such as the cytoplasm or cellular organelles. However, an increasing number of observations have shown that HSPs can also be released into the extracellular matrix and can play important roles in the modulation of inflammation and immune responses. Recent studies have demonstrated that extracellular HSPs (eHSPs) were involved in many human diseases, such as cancers, neurodegenerative diseases, and kidney diseases, which are all diseases that are closely linked to inflammation and immunity. In this review, we describe the types of eHSPs, discuss the mechanisms of eHSPs secretion, and then highlight their functions in the modulation of inflammation and immune responses. Finally, we take cancer as an example and discuss the possibility of targeting eHSPs for human disease therapy. A broader understanding of the function of eHSPs in development and progression of human disease is essential for developing new strategies to treat many human diseases that are critically related to inflammation and immunity.
Precise regulation of cell cycle is essential for tissue homeostasis and development, while cell cycle dysregulation is associated with many human diseases including renal fibrosis, a common process of various chronic kidney diseases progressing to end-stage renal disease. Under normal physiological conditions, most of the renal cells are post-mitotic quiescent cells arrested in the G0 phase of cell cycle and renal cells turnover is very low. Injuries induced by toxins, hypoxia, and metabolic disorders can stimulate renal cells to enter the cell cycle, which is essential for kidney regeneration and renal function restoration. However, more severe or repeated injuries will lead to maladaptive repair, manifesting as cell cycle arrest or overproliferation of renal cells, both of which are closely related to renal fibrosis. Thus, cell cycle dysregulation of renal cells is a potential therapeutic target for the treatment of renal fibrosis. In this review, we focus on cell cycle regulation of renal cells in healthy and diseased kidney, discussing the role of cell cycle dysregulation of renal cells in renal fibrosis. Better understanding of the function of cell cycle dysregulation in renal fibrosis is essential for the development of therapeutics to halt renal fibrosis progression or promote regression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.