[1] Previous estimates of the geodetic and geologic slip rates of the 1500 km long Altyn Tagh fault bordering the northern edge of the Tibetan plateau vary by a factor of five. Proposed reasons for these discrepancies include poor GPS geometry, interpretative errors in terrace morphology, and changes in fault slip rate over time. Here we present results from a new dense GPS array orthogonal to the fault at~86.2°E that indicates a velocity of 9.0 À3.2 / +4.4 mm/yr, in close agreement with geomorphologic estimates at the same location. Our estimated geodetic slip rate is consistent with recent geological slip rates based on terrace offsets. The resulting mean combined geological and geodetic slip rate (9.0 ± 4.0 mm/yr) is remarkably uniform for the central 800 km of the Altyn Tagh fault, significantly lower than early kinematic estimates and consistent with deformation elsewhere in Tibet and central Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.